Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

A first application of the Carbon Neutral Certification Minimum Viable Product (MVP) Operating System for Climate Action of the Carbon Neutral Accounting and Certification Working GroupWG is an application to allow data centers to credibly prove that they're carbon neutral with trusted data and Renewable Energy Certificates (REC's) and carbon offsets.

is a calculator for the carbon emissions of a data center.  We chose data centers as our first application because:

  • Data center have high energy use.  Energy is a data center's highest operating expense and could be about half of all its expenses.  (Uptime Institute's Simple Model for Determing True Total Cost of Ownership for Data Centers.) 
  • Globally, data centers use 103 terawatt hours of electricity (See Recalibrating global data center energy-use estimates), about 1% of the global electricity output.  This is equivalent to the energy use of 17 million American households (NYTimes.com) with a total carbon emissions footprint on par with those of airlines (BBC.com)
  • Data center energy use can obtained from utility energy bills, many of which are electronically available via the Green Button data standard.
  • Major cloud services providers are focused on improving data center energy efficiency, both as a competitive advantage and as a way to meet their climate goals.  Microsoft, for example, has committed to becoming carbon neutral, while Google has made both sigificant investments in data center efficiency and renewable energy.

The first version of a data center's carbon footprint calculator application would use smart contracts in a several permissioned Hyperledger channelchannels, as described in the the Carbon Neutral Certification Minimum Viable Product (MVP)Operating System for Climate Action, on these inputs:

  • Data center meta-data, such as its name and location.
  • Data center activity metrics, such as the number of U-racks of servers or the amount of CPU compute units, storage, and bandwidth provided during a time period.
  • Utility bills for the data center.Solar panels energy generated from the inverter.  While this should be netted out from the utility bill, it may still be useful to have this information because it measures how much renewable energy the data center is generating and using onsite.  All else equal, a data center which gets its energy from onsite renewables is better than one that gets all its energy from utilities and then offsets with REC's.  This is because onsite renewables makes the data center more resilient in case of utility shutoffs, and also because it directly reduces the emissions from the data center's energy use at the exact location of use.
  • CO2 emissions of the utilities, obtained from the Emissions & Generation Resource Integrated Database (eGRID) of the EPA.
  • Renewable Energy Certificates (REC's) purchased and retired by the data center.
  • Carbon offsets purchased by the data center.

The permissioned ledgers would include:

  • Energy use data, which could come from any combination of
    • Utility channel – This would be a ledger for the utility bills, set up by utility or its service provider, for its customers.  It would issue tokens for each customer based on the carbon footprint of their energy purchased, which would be calculated based on the utility bill for the customers and the utility's overall emissions.
    • UPS log data – Uninterrupted Power Supply (UPS) for the servers which could provide a log of power use by the servers.  This could then be used to estimate the HVAC costs for the servers based on models of cooling requirements for the server's space.  This method could be used when the data center does not have its own meter or utility bill and is instead aggregated with other building or campus utility bills.
    • Server utilization data – This could come directly from the servers themselves, which could report their up time and load levels.  This data could then be combined with models of energy use for the servers and their required HVAC to come up with energy usage.  This would be useful for determining the effects of software running on the servers.  
  • RECs and carbon offsets from the Emissions Tokens Network 

The data center would subscribe to all of the above channels and use the tokens to calculate its energy use with a smart contract whichAs an example, the smart contract could calculate carbon footprint of the data center by:

  1. Sum up the total energy (kWH of electricity) used by the data center,
  2. Subtract the REC's
  3. Calculate CO2 emissions from the difference of (1) - (2) using utility-specific emission data
  4. Subtract carbon offsets

...

Note that such a calculator is only calculating the carbon footprint of the existing equipment in a data center.  It could be expanded eventually to cover the full Greenhouse Gas Protocol for data center, so that it could be used to certify a "carbon neutral" data center.  That would require accounting for all the Scope 3 emissions, including the carbon footprint of new capital assets (servers), employee commuting and business travel, and other purchased supplies and equipment.    

We could implement this MVP application using the True TCO Calculator for Data Centers, as described in this Uptime Institute white paper.      

References