
A Model-Driven Approach to Establishment of Private Blockchain Business Networks

Keywords: Model-Driven Software Engineering, Blockchain, Private Blockchain, Hyperledger Fabric

1. Motivation

Enterprises are becoming more and more interested in the introduction of private blockchains (PBC) into

their existing IT infrastructure since their application ensures transparency, traceability, and trust between parties

involved into business processes without the need for a central authority. In order to achieve the three before-

mentioned core values, specialized infrastructure services, known as private blockchain business network (BN)

services, need to be developed before actual smart contracts, which implement the business rules, can be developed

and deployed. The need for a specific infrastructure and the distributed nature of BN itself are the main obstacles

keeping PBC from the production readiness.

Contemporary cloud-based infrastructure has reached the maturity level which is sufficient to support the

PBC BN specific requirements. Thus, some of the major Cloud Vendors (CV) offer a Blockchain as a Service

(BCaaS) as a part of their standard service offering. However, BCaaS have introduced several challenges to the BN

modeling and development. First of all, the usage of BCaaS implies that each organization involved into BN needs

to setup its part of BN separately, using the CV-specific web interface. This implies that there is no well-defined BN

modeling technique which can be applied to the process of BN establishment, independently from the chosen CV.

Accordingly, there is no single place for keeping the whole BN specification in order to be easily accessible for in-

place changes or reviews. Therefore, if there is a need to perform a change on the particular part of BN, it must be

done by each party separately, usually resulting in building a completely new BN. Thus, it is hard for engineers to

get a complete overview over the BN infrastructure, its participants, and their relationships, since there is an absence

of the concise BN specification. Furthermore, blockchain cloud services are by a degree of magnitude more

expensive than any other cloud service, so average users and startups usually use BCaaS just for production

purposes. Consequently, for testing and development purposes predefined BNs are typically used, rather than a

custom BN. A major problem with this approach is that predefined BN infrastructure and participant’s setup does

not match the given use-case and is used solely to significantly reduce development costs.

On the other hand, the microservice software architecture design principles and containerization techniques

have introduced a new approach to specification and development of distributed software systems. The use of

various container orchestration tools, such as Kubernetes, has introduced a new approach to the custom BN

infrastructure development, eliminating a need for using a BCaaS. The Kubernetes BN artifacts are always specified

in the same format, such as YAML, and can be disposed to the cloud execution platform, using the standard

command-line interface (CLI) commands. In this way, software engineers are able to develop the BN infrastructure

which is more suitable for their use case, using a well-defined set of steps. However, the process of custom BN

specification and development is not a trivial task, since it requires knowledge of various techniques and

technologies which are not necessarily related to the PBC development domain. For example, in order to develop a

basic custom BN, engineers should be familiar with the software containerization techniques and container

managers, such as Docker or Kubernetes. Also, various configuration parameters, which differ depending on the BN

participant role, need to be specified and configured correctly. Further, engineers should be familiar with the

cryptographic techniques for issuing, signing, and revoking certificates which specify identify and roles for

individual BN participants and users. Therefore, the process of BN network establishment is time consuming and

requires repetitive and boilerplate program code constructs to be written in different layers of the BN specification.

This can lead to another problem, since, while trying to reduce development time and effort by coping and pasting

similar code constructs, engineers often unintentionally introduce mistakes through omitting specific configuration

parameter values. These mistakes usually do not cause runtime errors, but the BN inconsistent behavior which is

hard to understand while debugging. Accordingly, separate teams of blockchain engineers are usually dedicated to

the custom BN specification and development.

Besides the aforementioned challenges, the BN engineering teams are also facing the BN complexity in

early development phases. The BN complexity is mainly caused by the large number of different PBC participants

and their numerous relationships. Therefore, engineers are typically trying to reduce the BN complexity by

specifying various BN models. These models comprise individual BN participants and their relationships, and, in the

end, they are used just for documentation purposes. On the other hand, Model-Driven Software Engineering

(MDSE) practitioners argue in favor of models as a formal way to describe the entities from the specific domain and

use of such specifications as primary artifacts in the development process. Therefore, it could be beneficial for

blockchain engineers to have a DSL which can be used to specify the BN infrastructure and its participants and to

use such a BN specification for generating executable BN program code. Generated program code should implement

the BN infrastructure services which can be then disposed the cloud execution platform and used by parties involved

in the BN.

2. Research Questions

In this research, we aim to resolve challenges related to custom BN modeling, development, and

disposition to cloud execution platforms. Accordingly, the first goal of this research is to introduce a model-driven

approach in order to address: (i) the BN modeling challenges, by providing a DSL as a formal modeling technique;

and (ii) the development and disposition challenges, by using the BN DSL specification for generating all the

required BN code constructs, so it can be deployed to the target cloud execution environment. By doing this, we first

want to increase the abstraction level of specifying a custom BN, in order to enable various blockchain domain

experts to develop their BNs even they are not familiar with concrete PBC development frameworks. In this way,

we also want to eliminate protentional errors caused by the need for specifying repetitive configuration parameters

and boilerplate code constructs. Second, our goal is to ease the process of custom BN specification and development

in practice, make it less dependent from the specific CVs or development teams and therefore less time-consuming.

Third, we want to decrease the development and testing costs in order to enable various individuals and

organizations to dispose their custom BNs to cloud execution platforms without the need for using expensive

BCaaS. We also consider this as a big step towards expanding the PBC development community, while at the same

time enabling great ideas and projects to reach the production readiness more quickly.

The second goal of this research is to develop a software tool, so that the proposed model-driven approach

can be utilized in real-world projects.

While surveying the state-of-the-art literature in this area, we have found several papers utilizing MDSE in

specification and development of PBC-related artifacts. In [1], authors have introduced a MSDE-based approach for

specification and generation of smart contracts for assets management. They have also developed a software tool

called Lorikeet. Lorikeet can automatically create well-tested smart contract code from specifications that are

encoded in the business process and data registry models based on the implemented model transformations. Authors

of [2] present an initial approach for generating smart contracts for coordinating the usage of cyber-physical system

elements from UML state charts. While the current target platform is Ethereum, the proposed approach can easily be

extended to other blockchain platforms. In comparison to our approach, the aforementioned research papers are

focused on the MDSE utilization in specification and generation of smart contracts, rather than the BN infrastructure

services. Finally, in [3] authors propose a model-driven approach, combining an ontology and a layer model, that is

capable of capturing the properties of existing blockchain-driven business networks. Therefore, this approach is

aimed to be applied on the existing blockchain BNs in order to describe and understand existing BN infrastructure,

rather than specify and develop a new one.

3. Methodology

Our research is composed of the following methodological steps: (i) develop the model-driven approach

and (ii) develop HyperBuilder: a software tool which enables utilization of the developed model-driven approach.

The development of the proposed model-driven approach includes the following steps: (i) develop the abstract

syntax of the HyperDSL language in the form of a meta-model that conforms to the Ecore meta-meta-model; (ii)

develop the concrete textual syntax of HyperDSL as a visual representation of the modeling concepts specified in

the HyperDSL meta-model and (iii) develop a set of M2T transformations in order to generate executable

programming code based on the HyperDSL BN specification. For the development of HyperBuilder, we have used

the Eclipse Modeling Framework (EMF). HyperDSL concrete syntax has been developed using the Xtext language,

while individual M2T transformations were developed using the Xtend language.

4. Solution/Discussion

Figure1. The HyperBuilder architecture and the HyperDSL meta-model

 On the left side of Figure 1, the HyperBuilder architecture is presented. HyperBuilder has two main

modules and several submodules. The HyperDSL module enables use of the concrete textual syntax of HyperDSL.

The HyperGenerator module contains several code generators, which use the HyperDSL BN specification as their

input and generate executable Kubernetes program code as output. The generated program code implements the BN

infrastructure services and can be deployed to a cloud execution platform.

 On the right side of Figure 1, the HyperBuilder meta-model is presented together with the description of

several HyperDSL concepts (with the corresponding meta-model classes and attributes written in italics inside the

parentheses). The main concept is the private blockchain BN (BusinessNetwork) which is composed of a set of

consortiums (Consortium). Each consortium is described by name (Name) and domain (Domain). Each participant is

additionally described by hostname (Hostname), its membership service provider name (MSPName) and port

number (Port). Consortiums contain a set of organizations (Organization) which are exchanging transactions

through channels (Channel), crating ledger data as a result of transactions. Transaction data are stored on the

organization’s peer (Peer). Each organization can additionally establish its certificate authority (CA) to generate

certificates and key material in order to configure and manage identity in the BN. The BN ordering service

(Orderer) provides a shared communication channel to clients and peers, offering a broadcast service for messages

containing transactions. Currently, two types of ordering services are supported: (i) Solo , which is more

suitable for development purposes since it is not fault-tolerant and (ii) Kafka, the production-ready crash

fault-tolerant ordering service which uses the Apache Kafka message provider.

References

[1] Tran, A., Lu, Q. and Weber, I., Lorikeet: A Model-Driven Engineering Tool for Blockchain-Based

Business Process Execution and Asset Management. In Proc. BPM 2018, Sydney, Australia, September 9 –

14, 2018, (pp. 56-60), 2018.

[2] Garamvölgyi, P., Kocsis, I., Gehl, B. and Klenik, A., 2018, June. Towards Model-Driven Engineering of

Smart Contracts for Cyber-Physical Systems. In 48th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks Workshops (DSN-W) (pp. 134-139), IEEE Press, 2018.

[3] Seebacher, S. and Maleshkova, M., 2018, January. A Model-driven Approach for the Description of

Blockchain Business Networks. In Proceedings of the 51st Hawaii International Conference on System

Sciences (HICSS-11), January 3 – 6, 2018.

