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1. Motivation 

Enterprises are becoming more and more interested in the introduction of private blockchains (PBC) into 

their existing IT infrastructure since their application ensures transparency, traceability, and trust between parties 

involved into business processes without the need for a central authority. In order to achieve the three before-

mentioned core values, specialized infrastructure services, known as private blockchain business network (BN) 

services, need to be developed before actual smart contracts, which implement the business rules, can be developed 

and deployed. The need for a specific infrastructure and the distributed nature of BN itself are the main obstacles 

keeping PBC from the production readiness.  

Contemporary cloud-based infrastructure has reached the maturity level which is sufficient to support the 

PBC BN specific requirements. Thus, some of the major Cloud Vendors (CV) offer a Blockchain as a Service 

(BCaaS) as a part of their standard service offering. However, BCaaS have introduced several challenges to the BN 

modeling and development. First of all, the usage of BCaaS implies that each organization involved into BN needs 

to setup its part of BN separately, using the CV-specific web interface. This implies that there is no well-defined BN 

modeling technique which can be applied to the process of BN establishment, independently from the chosen CV. 

Accordingly, there is no single place for keeping the whole BN specification in order to be easily accessible for in-

place changes or reviews. Therefore, if there is a need to perform a change on the particular part of BN, it must be 

done by each party separately, usually resulting in building a completely new BN. Thus, it is hard for engineers to 

get a complete overview over the BN infrastructure, its participants, and their relationships, since there is an absence 

of the concise BN specification. Furthermore, blockchain cloud services are by a degree of magnitude more 

expensive than any other cloud service, so average users and startups usually use BCaaS just for production 

purposes. Consequently, for testing and development purposes predefined BNs are typically used, rather than a 

custom BN. A major problem with this approach is that predefined BN infrastructure and participant’s setup does 

not match the given use-case and is used solely to significantly reduce development costs. 

On the other hand, the microservice software architecture design principles and containerization techniques 

have introduced a new approach to specification and development of distributed software systems. The use of 

various container orchestration tools, such as Kubernetes, has introduced a new approach to the custom BN 

infrastructure development, eliminating a need for using a BCaaS. The Kubernetes BN artifacts are always specified 

in the same format, such as YAML, and can be disposed to the cloud execution platform, using the standard 

command-line interface (CLI) commands. In this way, software engineers are able to develop the BN infrastructure 

which is more suitable for their use case, using a well-defined set of steps. However, the process of custom BN 

specification and development is not a trivial task, since it requires knowledge of various techniques and 

technologies which are not necessarily related to the PBC development domain. For example, in order to develop a 

basic custom BN, engineers should be familiar with the software containerization techniques and container 

managers, such as Docker or Kubernetes. Also, various configuration parameters, which differ depending on the BN 

participant role, need to be specified and configured correctly. Further, engineers should be familiar with the 

cryptographic techniques for issuing, signing, and revoking certificates which specify identify and roles for 

individual BN participants and users. Therefore, the process of BN network establishment is time consuming and 

requires repetitive and boilerplate program code constructs to be written in different layers of the BN specification. 

This can lead to another problem, since, while trying to reduce development time and effort by coping and pasting 

similar code constructs, engineers often unintentionally introduce mistakes through omitting specific configuration 

parameter values. These mistakes usually do not cause runtime errors, but the BN inconsistent behavior which is 

hard to understand while debugging. Accordingly, separate teams of blockchain engineers are usually dedicated to 

the custom BN specification and development.  



Besides the aforementioned challenges, the BN engineering teams are also facing the BN complexity in 

early development phases. The BN complexity is mainly caused by the large number of different PBC participants 

and their numerous relationships. Therefore, engineers are typically trying to reduce the BN complexity by 

specifying various BN models. These models comprise individual BN participants and their relationships, and, in the 

end, they are used just for documentation purposes. On the other hand, Model-Driven Software Engineering 

(MDSE) practitioners argue in favor of models as a formal way to describe the entities from the specific domain and 

use of such specifications as primary artifacts in the development process. Therefore, it could be beneficial for 

blockchain engineers to have a DSL which can be used to specify the BN infrastructure and its participants and to 

use such a BN specification for generating executable BN program code. Generated program code should implement 

the BN infrastructure services which can be then disposed the cloud execution platform and used by parties involved 

in the BN.  

2. Research Questions 

In this research, we aim to resolve challenges related to custom BN modeling, development, and 

disposition to cloud execution platforms. Accordingly, the first goal of this research is to introduce a model-driven 

approach in order to address: (i) the BN modeling challenges, by providing a DSL as a formal modeling technique; 

and (ii) the development and disposition challenges, by using the BN DSL specification for generating all the 

required BN code constructs, so it can be deployed to the target cloud execution environment. By doing this, we first 

want to increase the abstraction level of specifying a custom BN, in order to enable various blockchain domain 

experts to develop their BNs even they are not familiar with concrete PBC development frameworks. In this way, 

we also want to eliminate protentional errors caused by the need for specifying repetitive configuration parameters 

and boilerplate code constructs. Second, our goal is to ease the process of custom BN specification and development 

in practice, make it less dependent from the specific CVs or development teams and therefore less time-consuming. 

Third, we want to decrease the development and testing costs in order to enable various individuals and 

organizations to dispose their custom BNs to cloud execution platforms without the need for using expensive 

BCaaS. We also consider this as a big step towards expanding the PBC development community, while at the same 

time enabling great ideas and projects to reach the production readiness more quickly.  

The second goal of this research is to develop a software tool, so that the proposed model-driven approach 

can be utilized in real-world projects. 

While surveying the state-of-the-art literature in this area, we have found several papers utilizing MDSE in 

specification and development of PBC-related artifacts. In [1], authors have introduced a MSDE-based approach for 

specification and generation of smart contracts for assets management. They have also developed a software tool 

called Lorikeet. Lorikeet can automatically create well-tested smart contract code from specifications that are 

encoded in the business process and data registry models based on the implemented model transformations. Authors 

of [2] present an initial approach for generating smart contracts for coordinating the usage of cyber-physical system 

elements from UML state charts. While the current target platform is Ethereum, the proposed approach can easily be 

extended to other blockchain platforms. In comparison to our approach, the aforementioned research papers are 

focused on the MDSE utilization in specification and generation of smart contracts, rather than the BN infrastructure 

services. Finally, in [3] authors propose a model-driven approach, combining an ontology and a layer model, that is 

capable of capturing the properties of existing blockchain-driven business networks. Therefore, this approach is 

aimed to be applied on the existing blockchain BNs in order to describe and understand existing BN infrastructure, 

rather than specify and develop a new one.  

3. Methodology 

Our research is composed of the following methodological steps: (i) develop the model-driven approach 

and (ii) develop HyperBuilder: a software tool which enables utilization of the developed model-driven approach. 

The development of the proposed model-driven approach includes the following steps: (i) develop the abstract 

syntax of the HyperDSL language in the form of a meta-model that conforms to the Ecore meta-meta-model; (ii) 

develop the concrete textual syntax of HyperDSL as a visual representation of the modeling concepts specified in 

the HyperDSL meta-model and (iii) develop a set of M2T transformations in order to generate executable 



programming code based on the HyperDSL BN specification. For the development of HyperBuilder, we have used 

the Eclipse Modeling Framework (EMF). HyperDSL concrete syntax has been developed using the Xtext language, 

while individual M2T transformations were developed using the Xtend language. 

4. Solution/Discussion 

 
Figure1. The HyperBuilder architecture and the HyperDSL meta-model 

 On the left side of Figure 1, the HyperBuilder architecture is presented. HyperBuilder has two main 

modules and several submodules. The HyperDSL module enables use of the concrete textual syntax of HyperDSL. 

The HyperGenerator module contains several code generators, which use the HyperDSL BN specification as their 

input and generate executable Kubernetes program code as output. The generated program code implements the BN 

infrastructure services and can be deployed to a cloud execution platform. 

 On the right side of Figure 1, the HyperBuilder meta-model is presented together with the description of 

several HyperDSL concepts (with the corresponding meta-model classes and attributes written in italics inside the 

parentheses). The main concept is the private blockchain BN (BusinessNetwork) which is composed of a set of 

consortiums (Consortium). Each consortium is described by name (Name) and domain (Domain). Each participant is 

additionally described by hostname (Hostname), its membership service provider name (MSPName) and port 

number (Port). Consortiums contain a set of organizations (Organization) which are exchanging transactions 

through channels (Channel), crating ledger data as a result of transactions. Transaction data are stored on the 

organization’s peer (Peer). Each organization can additionally establish its certificate authority (CA) to generate 

certificates and key material in order to configure and manage identity in the BN. The BN ordering service 

(Orderer) provides a shared communication channel to clients and peers, offering a broadcast service for messages 

containing transactions. Currently, two types of ordering services are supported: (i) Solo , which is more 

suitable for development purposes since it is not fault-tolerant and (ii) Kafka, the production-ready crash 

fault-tolerant ordering service which uses the Apache Kafka message provider. 
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