Aries Framework JavaScript

WG Call - June 1st 2023



Agenda

Update on JWT VCs, extended crypto support and OpenliD4VC
AFJ 0.4.0 Release

Making it easier for people to get started with AFJ

Rethinking the Storage Layer



Update on JWT VCs, extended crypto support and OpeniD4VC

e Added support for JWT VCs in the W3cCredentialService and
W3cCredentialRecord

e Integrates with the JWS service and thus supports any JWA Algorithm AFJ and
the wallet the wallet supports. Currently ES256 and EdDSA are mainly
supported, but adding more is really easy if the crypto is supported



import {
JwaSignatureAlgorithm,
ClaimFormat,
JsonTransformer,
W3cCredential,

} from '@aries-framework/core'

const credential = JsonTransformer.fromJSON (
{
'@context': ['https://www.w3.0rg/2018/credentials/vl'],
type: ['VerifiableCredential'l,
issuer: 'did:example:123456#key-1"',
issuanceDate: '2023-01-25T16:58:06.292Z7"',
credentialSubject: {
id: 'did:key:z6MkggkLrRyLg6bgk27djwbbaQWgaSYgFVCKq9YKxZbNkpVv',
}
}
W3cCredential
)

const vclwt = await w3cJwtCredentialService.signCredential(agentContext, {
alg: JwaSignatureAlgorithm.ES256,
format: ClaimFormat.JwtVc,
verificationMethod: 'did:example:123456#key-1"',
credential,
})



did: jwk

Added did:jwk resolver and registrar

Encode a JSON Web Key (JWK) into a did document
* Spec

implementation

import { KeyType } from '@aries-framework/core'

const result = await agent.dids.create({
method: 'jwk',

options: {
keyType: KeyType.P256,

’

})


https://github.com/quartzjer/did-jwk/blob/main/spec.md
https://github.com/hyperledger/aries-framework-javascript/tree/bd4932d34f7314a6d49097b6460c7570e1ebc7a8/packages/core/src/modules/dids/methods/jwk

OpenlD for Verifiable Credentials

Extended OID4VCI support to also support JWT credentials and more crypto
types (was bound to EADSA/Ed25519Signature2018 before)

Integrates with JWS service and Signature suite registry, so automatically
supports what AFJ and the wallet supports

Still only supports receiving credentials, not issuing them.

No support for AnonCreds credentials.

Integrates with the did resolver/registrar so can be used with any did method



Requesting a credential

import { ClaimFormat, JwaSignatureAlgorithm } from '@aries—framework/core'

const result = await agent.dids.create({
method: 'jwk',
options: {
keyType: KeyType.P256,

’

})

const didJwk = DidJwk.fromDid('did:jwk:xxx")
const verificationMethod = didJwk.didDocument.dereferenceVerificationMethod (
didJwk.verificationMethodId

)

const w3cCredentialRecords =
await agent.modules.openId4VcClient.requestCredentialUsingPreAuthorizedCode({

issuerUri: 'openid-initiate-issuance://?issuer=xxx',

verifyCredentialStatus: false,

allowedProofOfPossessionSignatureAlgorithms: [JwaSignatureAlgorithm.EdDSA],

allowedCredentialFormats: [ClaimFormat.JwtVc],

proofOfPossessionVerificationMethodResolver: (/% options */) =>
verificationMethod,

})



export interface ProofOfPossessionVerificationMethodResolverOptions {
VESS
* The credential format that will be requested from the issuer.
* E.g. “jwt_vc® or “ldp_vc'.
*/
credentialFormat: SupportedCredentialFormats

VESS

* The JWA Signature Algorithm that will be used in the proof of possession.
* This is based on the “allowedProofOfPossessionSignatureAlgorithms™ passed
* to the request credential method, and the supported signature algorithms.
*/

proofOfPossessionSignatureAlgorithm: JwaSignatureAlgorithm

VESS

* This is a list of verification methods types that are supported
*x for creating the proof of possession signature. The returned

*x verification method type must be of one of these types.

*/

supportedVerificationMethods: stringl[]

VESS

* The key type that will be used to create the proof of possession signature.
* This is related to the verification method and the signature algorithm, and
* is added for convenience.

*/

keyType: KeyType

VESS

*x The credential type that will be requested from the issuer. This is
* based on the credential types that are included the credential offer.
*/

credentialType: string

VESS

* Whether the issuer supports the ‘did’ cryptographic binding method,
* indicating they support all did methods. In most cases, they do not
* support all did methods, and it means we have to make an assumption
* about the did methods they support.
*
*
*
*
u

If this value is "“false', the "supportedDidMethods’ property will
contain a list of supported did methods.

/
supportsAllDidMethods: boolean

VESS

A list of supported did methods. This is only used if the ‘supportsAllDidMethods®
property is “false'. When this array is populated, the returned verification method
MUST be based on one of these did methods.

*
*
*
*
* The did methods are returned in the format “did:<method>", e.g. “did:web’.
*

u

/
supportedDidMethods: string[]



SIOPv2 and OpeniD4VP

Currently working on SIOPv2 and OpenID4VP

Allows to share/prove credentials based on DIF Presentation Exchange (v1)
OpenlD4VP Spec

SIOPv2 Spec

RP sends authorization request to Self Issued OpenlID Provider (SIOP), wallet
responds with a VP based on DIF Presentation Definition

More updates soon


https://openid.net/specs/openid-4-verifiable-presentations-1_0.html
https://openid.net/specs/openid-connect-self-issued-v2-1_0.html

AFJ 0.4.0 Release

When is it going to happen?



Now!



AFJ 0.4.0 Release

0.1.0 release of shared components made today

After that, AFJ 0.4.0 will be released

Documentation will be switched to make 0.4.0 the current version
Still things to do, but we'll make incremental patch releases



Notes about 0.4.0

Experimental features are not covered by semver, and thus may experience breaking
changes before 0.5.0

Implementing your own AnonCredsRegistry and AnonCreds service
implementation. Using the default implementations (Indy SDK, AnonCreds RS) is
fine.

e Shared component libraries (Aries Askar, Indy VDR, AnonCreds RS)

OpenlD4VC Client, and JWT VCs

Multi-tenancy - Update Assistant NOT integrated yet with tenants module



Notes about 0.4.0

Indy SDK to Askar Migration scripts has limitations

e Mainly focused on holder/verifier role migration in React Native
e |ssuer records are not migrated
e Multi-tenancy NOT supported



Making it easier for people to get started
with AFJ



e Now that 0.4.0 is released we should make documentation and ease of use main
priority
e Simplify usage of demo (docker setup)
e Add documentation for missing parts
o Sharing Proofs
o OpeniD4VC

o DID Module
o ?7?



Rethinking Storage in Aries Framework JavaScript

e By default AFJ has used Indy SDK as the storage layer
e Recently added support for Aries Askar
e Both libraries have the same model for storage:
o Store encrypted blob of data by category and id
o Add tags (also encrypted) to be able to query records
o Supports unencrypted tags to be able to do advanced queries
= greater than, less than, etc..



Limitations

e Encrypted blob of data makes it hard to work with concurrent processes
modifying the same data
o Incrementing counters (for AnonCreds revocation)
o Selectively updating values (instead of overwriting the whole record)
o Askar supports locking which helps. Not integrated in AFJ yet



Limitations

e Custom encryption layer, while there's already databases out there that have
solved this problem

e Are we re-implementing the wheel?

e Migration of records is hard. All records need to be retrieved, decrypted,
updated and re-encrypted and stored again.



Limitations

No good way to do sorting and pagination

Sorting requires all data to be retrieved and decrypted (can use unencrypted
tags, but you need to know beforehand exactly what you're going to sort on)
Pagination is supported based on offset and limit, but no good way to handle
with changes in the dataset that you're querying (cursors, etc..)
https://github.com/hyperledger/indy-sdk/issues/2431


https://github.com/hyperledger/indy-sdk/issues/2431

Thinking of other solutions

Can we use a 'normal' database, and optionally leverage the native encryption
features a database provides?

o SQLite Encryption Extension
Cloud providers often have encryption of data by default

o Cloud SQL customer data is encrypted when stored in database tables,
temporary files, and backups. External connections can be encrypted
by using SSL, or by using the Cloud SQL Auth proxy.

Benefits

Use all the features a normal database has to provide

Better migration

Normalization of data

Sorting, LIKE filtering, better pagination (cursors)

Probably better performance, as building on top of a database that's optimized
to be fast.


https://www.sqlite.org/see/doc/trunk/www/readme.wiki

Rethinking the Storage Model

AFJs current record and storage model is not designed for this.
How would we define the database structure for records?
o |deally in a way that supports multiple backends
ORM
o Veramo uses TypeORM
o Define classes for your data model (same as now)
o Usually provides a migration interface
Domain specific language
o E.g. Prisma
= Mostly agnostic of database, but not really
= pbuilt in migrations
= No need for classes, types are generated
Query builder
o Can abstract language specific features
o Need to define models for in TS ourselves?
o E.g. Knex


https://typeorm.io/
https://github.com/uport-project/veramo/blob/next/packages/data-store/src/entities/credential.ts#L31
https://github.com/uport-project/veramo/blob/next/packages/data-store/src/migrations/3.createPrivateKeyStorage.ts
https://www.prisma.io/
https://knexjs.org/

Thoughts?



Next week

o Ariel will present on the new Wallet API
e Any other topics people would like to discuss?



