
VB Accumulator Integration in Ursa

• Ursa Fork: https://github.com/nitsatiisc/
ursa.git

• Branch: vb-accumulator-changes

• Overview: NewRevocation.md

• Tests & Benchmarks: https://github.com/
nitsatiisc/ursa/blob/vb-accumulator-
changes/libursa/tests/
test_generic_interface.rs

• VB Scheme: https://link.springer.com/
chapter/10.1007/978-3-030-95312-6_17

http://www.apple.com/uk
http://www.apple.com/uk
https://github.ibm.com/research-ssi/anon-creds-new-revocation/blob/vb-accumulator-changes/libursa/tests/test_generic_interface.rs
https://github.ibm.com/research-ssi/anon-creds-new-revocation/blob/vb-accumulator-changes/libursa/tests/test_generic_interface.rs
https://github.ibm.com/research-ssi/anon-creds-new-revocation/blob/vb-accumulator-changes/libursa/tests/test_generic_interface.rs
https://github.ibm.com/research-ssi/anon-creds-new-revocation/blob/vb-accumulator-changes/libursa/tests/test_generic_interface.rs
https://link.springer.com/chapter/10.1007/978-3-030-95312-6_17
https://link.springer.com/chapter/10.1007/978-3-030-95312-6_17

Motivation

• To overcome the practical challenges in rolling out eixsting credential
revocation for mass issuers (like New York State) for several million
credentials.

• For example, supporting revocation registries accounting for 20 million
credentials would require dissemination of 16GB of public parameters
(as tails vectors) to holder devices (hundreds of MB each).

Key Advantages

• The Vitto-Biryukov accumulator [1] supports efficient operations (proof,
verification, witness update) without requiring dissemination of large
public parameters (no gigabytes of public parameters).

• Verification of non-revocation proof requires just one pairing check using
modified proof of knowledge on the lines of improved proof of
knowledge of the BBS+ signature from [2].

1. Giuseppe Vitto, Alex Biryukov: Dynamic Universal Accumulator with Batch Update over Bilinear Groups. CT-
RSA 2022.

2. Jan Camenisch, Manu Drijvers, Anja Lehmann: Anonymous Attestation Using the Strong Diffie Hellman
Assumption Revisited. TRUST 2016.

Overiew of Key Interactions
and Objects

Setup

Issuer Holder Verifier

Creates Initial Registry
Shares Public Artefacts: RevocationKeyPublic, Initial Registry State

Creates Schema Definition
Shares Public Artefacts: CredentialPublicKey=(PrimaryPublicKey, RevocationPublicKey)

PrimaryPublicKey

RevocationPublicKey

PrimaryPrivateKey

RevocationPrivateKey

RegistryPublicKey RegistryPrivateKey

Relevant to all registries
Relevant to specific registry

Credential Issuance

Issuer HolderCredential request with blinded attributes

CredentialSignature

PrimaryCredentialSignature

NonRevocationCredentialSignature

RevocationRegistry

CredentialSignature

RevocationRegistryDelta

Public Update

Witness Management

Issuer Holder

RevocationRegistry Witness

RevocationRegistry

RevocationRegistryDelta

Witness

*Witness is the part of credential that needs to be continually updated in sync with Revocation Registry

Holder Verifier

SubProofRequest

- reveal attributes
- predicates

CredentialSchema

RevocationRegistry

SubProofRequest

- reveal attributes
- predicates

CredentialSignature

Witness

Proof

Verifier Policy

Proof Presentation

Design Goals

• Backward Compatibility (Strict): Existing artefacts should work as is using
existing interfaces. No changes to existing interfaces, or changes affecting
them (Zero changes to existing code).

• Forward Compatibility (Weak): It should be easy to use artefacts
generated using existing interface with newer interface with minimal
“wrapper” code.

• General Interface: Interfaces are revocation-scheme agnostic as much as
possible.

Overview of changes to libursa CL module

Ursa::cl

mod.rs issuer.rs prover.rs verifier.rs

extension.rs extension.rs extension.rs

New types are added
directly to mod.rs

Contains extended issuer
interfaces.

Contains extended prover
interfaces.

Contains extended
verifier interfaces.

Implementation : Generic/Wrapper Types
For each type which depends on revocation scheme, introduce a
VB-specific type, and a generic type which can represent both.

CredentialSignature CredentialSignatureVA

GenCredentialSignature

CKS(CredentialSignature),

VA(CredentialSignatureVA)

CKS VA

unwrap_cks() unwrap_va()

(CKS-Specific) (VB-Specific)

(Generic)
Disclaimer/Apology: All the VB-specific types end with VA !!!. Mixup between first and second name of
second author Alex Biryukov.

Implementation: Generic Functions - I
Define analogous functions for the new revocation scheme:

Implementation: Generic Functions - II

Downgrade generic types to
specific types

Delegate to specific function

Upgrade results back to generic
types

Extending presentation interface

Extend the types to allow different revocation(s)

Extending Presentation Interface

Define generic interfaces with generic types

Create Schema
Definition

Create Registry
Definition

Issue
Credentials

Initialize
Witness

Initialize
Witness

Prove and Verify
Presentation

Revoke
Credentials

Revoke
Credentials

Update Witness

Update Witness

Prove and Verify
Presentation

Tutorial: Complete Workflow Functions

CKS Scheme

VB Scheme

Detailed examples for complete worklfows in tutorials module @ https://github.com/nitsatiisc/ursa/blob/vb-
accumulator-changes/libursa/tests/test_generic_interface.rs

https://github.ibm.com/research-ssi/anon-creds-new-revocation/blob/vb-accumulator-changes/libursa/tests/test_generic_interface.rs
https://github.ibm.com/research-ssi/anon-creds-new-revocation/blob/vb-accumulator-changes/libursa/tests/test_generic_interface.rs

Benchmarks
Issuer CKS(s) VA(s)

Gen Registry (100K) 126.2 52.7

Issue Credential 0.11 0.13

Issue Update(100) 0.002 0.02

Holder CKS(ms) VA(ms)

Init Witness(100K) 250 0

Update Witness(100) 0.0 1

Proof 53 37

Verifier CKS(ms) VA(ms)

Verify 49 26

Tests and benchmarks @: https://github.com/nitsatiisc/ursa/blob/vb-accumulator-changes/libursa/tests/
test_generic_interface.rs

https://github.ibm.com/research-ssi/anon-creds-new-revocation/blob/vb-accumulator-changes/libursa/tests/test_generic_interface.rs
https://github.ibm.com/research-ssi/anon-creds-new-revocation/blob/vb-accumulator-changes/libursa/tests/test_generic_interface.rs

Custom Modifications to VB protocol

• Improved proof of knowledge of the non-revocation witness based on
improved PoK for BBS+ signature in [2]. Reduces pairing checks for the
verifier from ~10 to 1. Results in about 45% faster proving and verification
on average.

• Maintain polynomials as evaluations: and changes
to protocol to work with this representation.

f(x) ≡ ⟨ f(1), …, f(d)⟩

Questions?

Vitto-Biryukov Accumulator
. Vβ1 βN y1 yk

α Registry Private State:

Accumulated Set:

Accumulator Value:

α, Y0 = {β1, …, βN}

YV = {y1, …, yk}

V

V = ∏
z∈Y0∪YV

(α + z) ⋅ P

* The accumulated set corresponds to revoked elements

Non Membership Witness

For y not in the accumulated set, the Issuer issues a non-membership
witness as: wy = (C, d)

C =
fV(α) − fV(−y)

y + α
⋅ P, d = fV(−y)

where fV(x) = ∏
z∈Y0∪YV

(x + z)

We note that d is non-zero when y is not in the set. Also note that V = fV(α) . P

Batch Update
(YV, V) (YV′

, V′)
Y = {y1, …, yn}

wy = (C, d) w′ y = (C′ , d′)
?

d′ = dA(y) ⋅ d
C′ = dA(y) ⋅ C + vA(y) ⋅ V

dA(x) =
n

∏
i=1

(x − yi)

vA(x) =
n

∑
s=1

s−1

∏
i=1

(yi + α)
n

∏
j=s+1

(yi − x)

Batch Update -II

The issuer cannot publish polynomial v_A(x) in plain-text, as it can leak . Thus as
part of batch update protocol, issuer publishes:

α

Ω = (c0 ⋅ V, c1 ⋅ V, …, cn ⋅ V)

Where: vA(x) = c0 + c1x + ⋯ + cnxn

From the above update, the holder can locally compute v_A(y).V as the following
scalar product:

vA(y) ⋅ V = ⟨(1,y, y2, …, yn), Ω⟩

Modified Batch Update

The issuer cannot publish polynomial v_A(x) in plain-text, as it can leak . Thus as
part of batch update protocol, issuer publishes:

α

Ω = (vA(ω0) ⋅ V, vA(ω1) ⋅ V, …, vA(ωn) ⋅ V)

Where: ω0, …, ωn

From the above update, the holder can locally compute v_A(y).V as the following
scalar product:

vA(y) ⋅ V = ⟨(ℓ0, …, ℓn), Ω⟩

 are fixed.

In the above are Lagrangian coefficients such that:ℓ0, …, ℓn

vA(y) =
n

∑
i=0

ℓivA(ωi)

