Securely Improving Performance in PoW Blockchains using Anchors

Hyperledger India Chapter Women in Blockchain 2023

Ovia Seshadri

LinkedIn: @oviaseshadri Twitter: @ovia_seshadri

Talk Outline

Blockchain Background

- Problems in PoW Blockchains
- Goals
- Anchors
 - Features and Mechanism
 - Theoretical and Experimental Results

What is a Blockchain system?

System where data can be stored and retrieved Single dataset, multiple copies, authoritative universal log

Facts can be independently verified by anyone

Data is guaranteed to be unaltered

Decentralized and distributed

The PoW Blockchain workflow

What is Proof of Work?

- Election lottery based "Nakamoto" consensus
- Puzzles that need more work to solve than to verify.
- Non-precomputable
- Agreement on the amount of Computing power in the network

Proof

Varying difficulty levels

Challenge

40 zeros ~ 240 = 1 trillion trials for one solution

PoW makes block generation a random process

Hashing Algorithm

PoW Block Structure

Illustrative block diagram for internal block structure

Talk Outline

- Blockchain Background
- Problems in PoW Blockchains
- Goals
- Anchors
 - Features and Mechanism
 - Theoretical and Experimental Results

Forks and their effect on Chain Stability

J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten, "Sok: Research perspectives and challenges for bitcoin and cryptocurrencies," in Security and Privacy (SP), 2015 IEEE symposium on. IEEE, 2015, pp. 104–121.

J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten, "Sok: Research perspectives and challenges for bitcoin and cryptocurrencies," in Security and Privacy (SP), 2015 IEEE symposium on. IEEE, 2015, pp. 104–121.

Confirmation Time and Double Spends

Satoshi suggested 6th block confirmation to guarantee committed transactions with probability of 0.99 in the presence of 10% adversary.

S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," 2008 S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," 2008

Selfish Mining

The adversary's goal is to gain more than their fair share of revenue and may deviate from honest protocol to do so.

The selfish miners achieve their goal by secretly forking the blockchain and selectively revealing their mined blocks or links to invalidate honest miners' work and claiming unfair rewards.

Illustrative view of Selfish Mining Attack

I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In FC. Springer, 2014.

Issues with PoW blocks

A. Gervais, G. O. Karame, K. W'ust, V. Glykantzis, H. Ritzdorf, and S. Capkun. On the security and performance of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages 3–16. ACM, 2016.

Effort so far

Performance matters

Security matters

Trade-off between performance and security in blockchains

Small block interval

- More Forks
- Waste of Computational energy and Mining rewards

Large block interval

- High Confirmation Time
- Lower transaction throughput

Hierarchical Blockchain/ Multi Blockchains

- Not an incremental approach
- loss of simple Linear structure
- Additional Security vulnerabilities

A. Gervais, G. O. Karame, K. W'ust, V. Glykantzis, H. Ritzdorf, and S. Capkun. On the security and performance of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages 3–16. ACM, 2016.

Is Proof of Work still relevant?

- Demonstrated their resilience, durability, robustness and longevity since their inception
- Truly resistant to 51% attacks
- Resistant to centralisation
- Widely adopted with high TVL
- Vibrant ecosystem and developer communities
- New Innovations BRC20

With minor modifications to architecture such that it benefits new and existing PoW blockchain platforms

Talk Outline

- Blockchain Background
- Problems in PoW Blockchains
- Goals
- Anchors

Features and Mechanism

Theoretical and Experimental Results

J.

What are Anchors?

Anchors are block headers that are mined with less PoW than blocks. They contain no transactions in

the body except the Coinbase and are mined on blocks.

O. Seshadri, V. J. Ribeiro, and A. Kumar. Securely boosting chain growth and confirmation speed in pow blockchains. In 2021 IEEE International Conference on Blockchain (Blockchain), pages 140–149, 2021.

Generation of Anchors

Processing of Anchors

If addition of new anchor creates a new heaviest chain, Bharat must shift mining on the parent of the new anchor

 $SHA_{256}(SHA_{256}(CB)+Txn Hash) = Merkle Root$

Talk Outline

- Blockchain Background
- Problems in PoW Blockchains
- Goals
- Anchors
 - Features and Mechanism
 - Experimental and Theoretical Results

The Bitcoin Core Developers Satoshi Nakamoto. Source Code - Bitcoin Core v0.16. 2018. URL: https://github.com/bitcoin/bitcoin/. Protocol documentation - Bitcoin Wiki. 2019. URL: https://en.bitcoin. it/wiki/Protocol documentation.

Intercity delay of our test-bed

City	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Adelaide (1)	0	322.478	324,752	217.291	158.629	221.814	301.07	240.907	359.966	443.586	241.13	318.534	179.417	339.143	396.119	228.227	327.753	19.457	230.093	328.809
Amsterdam (2)	322.408	0	229.02	98.18	215.336	190.816	13.271	81.857	71.874	161.2	76.24	12.127	141.875	239.652	298.991	164.633	25.048	286.033	87.729	15.269
Bangkok (3)	318.713	216.251	0	251.168	67.833	202.647	247.368	252.748	243.547	111.188	286.555	204.941	193.722	153.847	230.445	65.303	306.793	217.937	273.725	200.744
Chicago (4)	216.845	97.568	274,366	0	213.579	98.319	87.777	23.371	149.923	221.461	23.475	96.012	51.536	198.451	287.763	223.594	112.26	201.674	16.294	116.801
Hong Kong (5)	158.519	215.473	68.942	219.217	0	129.538	242.317	196.769	279.746	250.772	223.08	281.747	156.216	120.274	210.75	33.895	220.697	158.827	244.335	270.929
Honolulu (6)	221.763	189.393	235.195	98.295	129.377	0	180.113	117.127	222.317	253.609	117.076	191.236	59.781	198.957	273.476	189.597	200.265	202.78	116.792	194.694
London (7)	301.743	13.097	259.359	86.029	242.261	180.063	0	80.87	51.311	138.12	75.404	5.186	161.183	292.729	247.463	172.112	25.601	281.339	90.545	25.198
Montreal (8)	240.935	81.883	274,188	24.029	196.744	117.096	80.795	0	127.48	236.042	9.459	\$1.731	72.789	273.287	238.298	234.766	106.4	258.365	8.287	96.553
Moscow (9)	359.862	71.974	259.511	142.76	279.799	222.334	51.424	127.191	0	182.3	131.194	48.871	195.967	347.679	262.81	189.566	19.085	346.504	127.585	51.951
New Delhi (10)	443.114	161.511	130.483	222.377	250.787	253.687	138.195	241.518	182.245	0	207.956	145.391	264.517	401.264	421.59	70.416	173.42	289.307	233.755	158.673
New York (11)	241.1	76.191	297.35	22.569	218.884	116.982	75.443	9.442	131.177	207.915	0	74.249	70.354	247.133	234.047	247.402	95.822	213.626	11.978	103.882
Paris (12)	313.009	17.616	203.92	91.485	244.683	194.32		82.348	49.216	173.393	84.873	0	144.178	264.478	259.406	245.792	30.398	279.41	87.528	13.669
San Francisco (13)	179.411	142.018	234.571	51.785	156.318				196.008	264.446	70.331	144.255	0	167.629	164.349	168.186	164.309	152.079	63.375	166.86
Shanghai (14)	368.599	257.577	241.753	335.279	132.536				250.068	400.41	242.636	294.528	167.619	0	30.528	168.186	264.322	332.21	259.428	166.86
Shenzhen (15)	368.599	330.459	241.753	335.279	132.53				50.058	400.41	242.636	294.528	167.619	0.044	0	168.186	264.322	309.734	259.428	166.86
Singapore (16)	228.315	164.687	51.543	220.171	34.2	0			189.6	65.057	247.449	242.467	168.158	265.77	390.675	0	188.129	93 <i>.</i> 93	241.711	170.708
Stockholm (17)	327.663	25.06	314,189	112.901	222.6	28	31.41	ms	2.071	173.567	95.956	28.783	164.304	266.964	241.32	188.123	0	308.59	109.8	33.014
Sydney (18)	19.364	286.342	203.229	202.69	158.42				6.489	289.99	213.652	279.966	152.022	323.34	307.296	92.903	308.34	0	213.521	309.075
Toronto (19)	230.057	87.712	287.936	15.838	242.712				127.657	233.971	11.985	\$7.653	63.415	248.021	298.331	241.611	109.85	213.545	0	129.925
Zurich (20)	328.837	15.328	219.488	115.708	270.982				52.061	158.741	103.925	13.534	166.92	292.636	218.718	170.628	33.069	308.965	129.792	0

Global Ping Statistics - WonderNetwork. https://wondernetwork.com/pings, 2019

Delay Model

Anchors being fixed small structures, have low broadcast latency.

Experiment 1: Propagation Time

- Network delay for block increases linearly with increase in block size
- Anchors of 264 bytes propagate at an avg of ~0.5 secs across the network.
- Anchors are 3x faster that blocks of 100KB size.
- Anchors are 10x faster that blocks of 8MB size.
- Anchors propagate faster than all block sizes considered.

- Block Size ~1.2MB and Anchors are fixed 264 bytes
- Anchors' mean prop time was 0.45 secs
- Avg delay for blocks was 3.46,3.52 and 3.7 secs for a = 2,5,10 respectively
- Anchors are at least 5 times faster than blocks
- Anchors work well without creating significant bandwidth or latency overheads

Fork Resolution with Anchors

View 1 of the blockchain

Experiment 2: Fork Resolution

Fork created by B2.

In a system without Anchors, it is resolved by B3. In a system with Anchors, it is resolved by A1.

Experiment 3: Fork Prevention

In a system with Anchors, the fork never really happens since A1 arrived and was accepted before B2.

B1's chain already has more weight and is the final chain.

 $f_{prevented}$ is the number of forks prevented in the network. $f_{occurred}$ is the number of fork occurrences in the network. $F_{prevented}$ is the ration of forks prevented in the network.

ר)

Notations and Assumptions

		Partially synchronous network				
n	Number of miners in the network	$ \Delta_{b}^{Maximum network} $ delay for Blocks	α	Weight of an anchor. $\alpha \leq$		
q	Fraction of the network controlled by adversary. $q < 0.5$	$\Delta_a A^{\text{Maximum network}} \Delta_a A^{Maximum ne$	a	Frequency of anchors per block = $1/\alpha$		
	(Probability of an honest block a a time instant 	t			

Chain Growth with Anchors

Chain growth is the minimum weight all honest miner's chains must have gained in a time interval.

We study chain growth in weight as opposed to length in prior work.

v is the lower bound honest weight gained in unit time in a system with anchors.

Lower bound growth per round of PoW systems without anchors (v_{pow}) is found by Pass et. Al.

For any interval [s,s+t] where $t>2 \Delta_b$ rounds, system with anchors achieves an honest chain growth of at least vt in weight except with negligible probability. Honest growth rate parameter per round is,

$$\boldsymbol{v_{po}} = \frac{G}{G\Delta_b + 1}$$

We find that $v_{pow} \leq v$, therefore, a system with anchors has better chain growth.

R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous networks. In EURO-CRYPT. Springer, 2017.

Intuition behind the double spend with anchors

v is the lower bound honest weight gained in a time round in a system with anchors.

β is the upper bound adversary growth in a time round in a system with anchors. Assume v > β.

Confirmation Time with Anchors

a Frequency of anchors per block = 2 *k* Number of confirmation blocks

Anchors reduce the chance of a double spend attack in Bitcoin by over 2 orders of magnitude. Alternatively, they can reduce the confirmation time by half for the same security guarantee

S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," 2008 S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," 2008 M. Rosenfeld. Analysis of hashrate-based double spending. arXiv preprint arXiv:1402.2009, 2014.

Confirmation Time with Anchors (Time Variant)

<u>a</u> = 2

<u>k</u> = 6

C. Pinz on and C. Rocha. Double-spend attack models with time advantage for bitcoin. Electronic Notes in Theoretical Computer Science, 329:79–103, 2016. S. Neumayer, M. Varia, and I. Eyal. An analysis of acceptance policies for blockchain transactions. IACR Cryptology ePrint Archive, 2018

Reduces confirmation time by half in Bitcoin with no security compromise

Fast signaling mechanism of mining power division in case of forks

 Five times faster propagation than bitcoin blocks
 Representation time

 Provides stability by steady weight addition to the chain
 Image: Constraint of the chai

Thank You! Questions?

LinkedIn: @oviaseshadri Twitter: @ovia_seshadri

Additional slides

Anchor Rewards

- Anchors can be rewarded by including its header in later blocks.
- This can help chains with anchors define its weight unambiguosly
- Anchor header without CB is 80 bytes
- When a=2 this is 160 bytes addition to a block's body on avg.

Creation reward for including anchors in a block at a length of 'n' from its parent

$$r_i(n)$$

Inclusion reward for including anchors in a block at a length of 'n' from its parent

Block reward is 1 Anchor reward is α .

- Miners get smaller more timely payouts
- Disincentivizes the need to join mining pools
- Reduces ambiguity in chain weight.

Chain Quality with Anchors

Chain Quality is the minimum honest weight contributed on any miner's chain in a time interval.

Consistency with Anchors

Consistency is a theoretical security guarantee that shields the system from any type of adversary attack if he owns power less than a threshold.

Consistency is achieved when the system can guarantee with high probability two properties:

'†'

Common Prefix

The chains of any two honest players at any time instant must have common ancestors of entities except for the last 't' rounds with high probability in 't'

Future Self Consistency

The chains of any honest player at any two time instants "i" and "j" where "i<j" must have common ancestors of entities except for the last 't' rounds before "i" with high probability in

[7] A. Dembo, S. Kannan, E. N. Tas, D. Tse, P. Viswanath, X. Wang, and O. Zeitouni. Everything is a race and Nakamoto always wins. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages 859–878, 2020

[36] P. Ga^{*}zi, A. Kiayias, and A. Russell. Tight Consistency Bounds for Bitcoin. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS '20, pages 819–838, New York, NY, USA, 2020. Association for Computing Machinery