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Introduction: Blockchain

• Blockchain is a distributed, decentralized database or ledger of

records.

Block-1

T1 T2 T3 T4

Block-2

T1 T2 T3

• Miners add blocks to the blockchain, and validators validate each

block added to the blockchain.

• Example: Bitcoin1, Ethereum2, Hyperledger3, etc.

Execution of Ethereum

1
https://bitcoin.org/en/

2
https://www.ethereum.org/

3
https://www.hyperledger.org/
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Introduction: Ethereum High Level Design

• Ethereum nodes form a peer-to-peer system.

• Clients (external to the system) wishing to execute smart contracts,

contact a peer of the system.

Peer1

Peer2

Peer3

Peer4

Client1

Client2

Client3

T1

T2

T3

B1 B2 B3

B1 B2 B3B1 B2 B3

B1 B2 B3

Figure 1: Clients send Transaction T1, T2 and T3 to Miner (Peer4)
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Introduction: Ethereum High Level Design

Peer4 T1 T2 T3 FS
Hash of the 

Previous 
Block

B1 B2 B3 B4

Figure 2: Miner forms a block B4 and computes final state (FS) sequentially
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Introduction: Ethereum High Level Design

Peer1

Peer2

Peer3

Peer4

B1 B2 B3

B1 B2 B3B1 B2 B3

B1 B2 B3 B4

B4

B4B4

Figure 3: Miner broadcasts the block B4
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Introduction: Ethereum High Level Design

Peer1

Peer2

Peer3

B1 B2 B3

B1 B2 B3B1 B2 B3

B4

B4

B4

T1 T2 T3 FS
Hash of the 

Previous 
Block

T1 T2 T3 FS
Hash of the 

Previous 
Block

T1 T2 T3 FS
Hash of the 

Previous 
Block

Compute CS

Compute CS Compute CS

Figure 4: Validators (Peer 1, 2, and 3) compute current state (CS) sequentially
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Introduction: Ethereum High Level Design

Peer1

Peer2

Peer3

B1 B2 B3

B1 B2 B3B1 B2 B3

B4

B4

B4

T1 T2 T3 FS
Hash of the 

Previous 
Block

T1 T2 T3 FS
Hash of the 

Previous 
Block

T1 T2 T3 FS
Hash of the 

Previous 
Block

CS == FS
 Reject Block B4

No Yes Agree on 
Block B4

CS == FS
Reject Block B4
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No
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Figure 5: Validators verify the FS and reach the consensus protocol
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Introduction: Ethereum High Level Design

Peer1

Peer2

Peer3

Peer4

B1 B2 B3

B1 B2 B3B1 B2 B3

B1 B2 B3 B4

B4

B4

B4

Figure 6: Block B4 successfully added to the blockchain
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Introduction: Smart contracts

• Modern blockchain interposes an additional software layer between

clients and the blockchain known as smart contracts.

• A smart contract is a piece of code deployed in the blockchain node.

• Client requests are directed to the smart contracts. Examples: Coin,

Ballot, Simple Auction, etc.4

Listing 1: Transfer function

1 transfer(s_id , r_id , amt) {
2 if(amt > bal[s_id])
3 throw;
4 bal[s_id] -= amt;
5 bal[r_id] += amt;
6 }

4
https://solidity.readthedocs.io/
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Bottleneck in Existing Blockchain: Ethereum

• Serial execution of the transactions by miners and validators fails to

harness the power of multi-core processors’, thus degrading

throughput.

(b) Concurrent Execution(a) Serial Execution of transactions

T1

T2

T1

T2

transfer(A,B, $10)
C1

C2

transfer(C ,D, $20)

transfer(A,B, $10)

C1

transfer(C ,D, $20)

C2

Figure 7: Motivation towards concurrent execution over serial

• By leveraging multiple threads to execute transactions, we can

achieve better efficiency and higher throughput.
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Concurrent Execution Challenges (1/2)

Smart	Contract
A B

data	item
(k)

T1 T2

Conflict

Figure 8: Conflicting access to shared data item.

• Identifying the conflicts at run-time is not straightforward.

• Improper use of locks may lead to deadlock.

• Discovering an equivalent serial schedule of concurrent execution of

SCTs is difficult.

Solution: We use Software Transactional Memory Systems (STMs) to

solve these challenges.
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Concurrent Execution Challenges (2/2)

• Validator may incorrectly reject a valid block proposed by the miner.

We call such error as False Block Rejection (FBR) error.

T1

A

B

T2

transfer(A,	B,	$10)

transfer(B,	A,	$20)

Time

T1 transfer(A,	B,	$10)

T2 transfer(B,	A,	$20)

Account IS FS
A $10 $20
B $10 $0

(b)	Equivalent	execution	by	miner	(T1T2)

C1

C2

T1 transfer(A,	B,	$10)

T2 transfer(B,	A,	$20)

(c)	Equivalent	execution	by	validator	(T2T1)

C1

A2

Account IS FS
A $10 $0
B $10 $20

Miner	Final	State

Validatror	Final	State

(a)	Concurrent	execution

Solution: Miner appends the Block Graph (BG)5,6 in the proposed block

to avoid the FBR error.

5
Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding Concurrency to Smart Contracts. PODC, 2017

6
Anjana, P.S., Kumari, S., Peri, S., Rathor, S., Somani, A.: An efficient framework for optimistic concurrent execution of smart

contracts. PDP, 2019
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Proposed Methodology

• We develop an efficient framework for the concurrent execution of

SCTs by miners using an optimistic Object-Based STMs (OSTMs).7

• STMs are convenient programming paradigms for a programmer to

access shared memory using multiple threads.

• Traditional STMs work on read-write primitives. We refer to these

as Read-Write STMs (RWSTMs).

• OSTMs operate on higher level objects rather than primitive reads

and writes which act upon memory locations.

• OSTMs provide greater concurrency than RWSTMs. example

• Hash Table based OSTMs export the following methods:

• STM begin()

• STM insert()

• STM delete()

• STM lookup()

• STM tryC()

• STM Abort()

7
Peri, S., Singh, A., Somani, A.: Efficient means of Achieving Composability using Transactional Memory. NETYS, 2018.
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A Thread Safe Integration of STMs in Smart Contracts

Listing 1: Transfer function

1 transfer(s_id , r_id , amt) {
2 if(amt > bal[s_id])
3 throw;
4 bal[s_id] -= amt;
5 bal[r_id] += amt;
6 }

Listing 2: Transfer function using STM

7 transfer(s_id , r_id , amt) {
8 t_id = STM_begin ();
9 s_bal = STM_lookup(s_id);

10 if(amt > s_bal) {
11 abort(t_id);
12 throw;
13 }
14 STM_delete(s_id , amt);
15 STM_insert(r_id , amt);
16 if(STM_tryC(t_id)!= SUCCESS)
17 goto Line 8;// Trans aborted
18 }
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Block Graph (1/2)

• Miner maintains the BG in the form of the adjacency list, where

vertices correspond only to committed SCTs.

• Edges of the BG depends on the conflicts given by the OSTMs.

Conflicting Operations =



STM lookupi () − STM tryCj ()

STM deletei () − STM tryCj ()

STM tryCi () − STM tryCj ()

STM tryCi () − STM deletej ()

STM tryCi () − STM lookupj ()

(1)

• Multi-threaded miner uses addVert() and addEdge() methods of

BG.

• Later, validators re-execute the same SCTs concurrently and

deterministically relying on the BG.

• Two SCTs that do not have a path can execute concurrently.
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Block Graph (2/2)
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Figure 9: Data structure of BG

• OSTMs8 have fewer conflicts than RWSTMs which in turn, allows

validators to execute more SCTs concurrently.

• This also reduces the size of the BG leading to a smaller

communication cost than RWSTMs.

8
Herlihy, M., Koskinen, E.: Transactional Boosting: A Methodology for Highly-concurrent Transactional Objects. PPoPP, 2008.
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Greater Concurrency: Multi-Version OSTM based Miner

• Multi-Version OSTMs (MVOSTMs)9 maintain multiple versions for

each shared data item and provide greater concurrency relative to

Single-Version OSTMs (SVOSTMs).

• MVOSTM-based BG has fewer edges than an SVOSTM-based BG,

and further reduces the size of the BG leading to a smaller

communication cost.

MVOSTM

9
Juyal, C., Kulkarni, S., Kumari, S., Peri, S., Somani, A.: An innovative approach to achieve compositionality efficiently using

multi-version object based transactional systems. SSS, 2018.
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Experimental Evaluation (1/2)

• In Ethereum blockchain, smart contracts are written in Solidity

language, which runs on Ethereum Virtual Machine (EVM).

• EVM does not supports multi-threading.

• We converted smart contracts from Solidity to C++ language for

multi-threaded execution.

Sweta Kumari Efficient Concurrent Execution of Smart Contracts in Blockchains using Object-based Transactional Memory 18 / 24



Experimental Evaluation (1/2)

• In Ethereum blockchain, smart contracts are written in Solidity

language, which runs on Ethereum Virtual Machine (EVM).

• EVM does not supports multi-threading.

• We converted smart contracts from Solidity to C++ language for

multi-threaded execution.

Sweta Kumari Efficient Concurrent Execution of Smart Contracts in Blockchains using Object-based Transactional Memory 18 / 24



Experimental Evaluation (1/2)

• In Ethereum blockchain, smart contracts are written in Solidity

language, which runs on Ethereum Virtual Machine (EVM).

• EVM does not supports multi-threading.

• We converted smart contracts from Solidity to C++ language for

multi-threaded execution.

Sweta Kumari Efficient Concurrent Execution of Smart Contracts in Blockchains using Object-based Transactional Memory 18 / 24



Experimental Evaluation (2/2)

• We consider four benchmark contracts Coin, Ballot, Simple Auction,

and Mix from Solidity documentation.

1. Coin: A simple cryptocurrency contract.

2. Ballot: An electronic voting contract.

3. Simple Auction: An online auction contract.

4. Mix: Combination of above three contracts in equal proportion.

• We ran our experiments on Intel (R) Xeon (R) CPU E5-2690 that

supports 56 hardware threads and 32GB RAM.

• We consider two workloads:

Workload SCTs Threads Shared data items

Workload 1 (W1) 50 - 300 50 500

Workload 2 (W2) 100 10 - 60 500
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Results: Multi-threaded Miner Speedup
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Figure 10: Speedup of Multi-threaded miner over Serial miner

• MVOSTM, SVOSTM, MVTO, BTO, Speculative Bin, and Static Bin

miner provide an average speedup of 3.91×, 3.41×, 1.98×, 1.5×, 3.02×,

and 1.12×, over Serial miner, respectively.
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Figure 11: Speedup of SMV over Serial validator

• MVOSTM, SVOSTM, MVTO, BTO, Speculative Bin, and Static Bin

Decentralized SMVs provide an average speedup of 48.45×, 46.35×,

43.89×, 41.44×, 5.39×, and 4.81× over Serial validator, respectively.
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Real-world applications of Blockchain

• Automating and securely storing user records such as land sale

documents, vehicle, and insurance records.

• Blockchain-based Audit log

• Supply Chain Management.

• Health record.

• Decentralized Education System.
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Conclusion

• We developed an efficient framework for concurrent execution of

SCTs by a multi-threaded miner using two protocols, SVOSTM and

MVOSTM of optimistic STMs10.

• To avoid FBR errors, the multi-threaded miner captures the

dependencies among SCTs in the form of a BG.

• The proposed approach achieves significant performance gain over

the state-of-the-art SCTs execution framework.

10
Technical report: https://arxiv.org/abs/1904.00358
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Research Opportunities

• A malicious miner can intentionally append a BG in a block with

additional edges to delay other miners. Preventing such a malicious

miner would be an immediate future work.

• BG consumes space. So, constructing storage optimal BG is an

interesting challenge.

• Implementing our proposed approach in other blockchains such as

Bitcoin, Hyperledger, and EOSIO is an exciting exercise.

• EVM does not support multi-threading, so, another research

direction is to design a multi-threaded EVM.

Thank You!
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Read-Write STM (RWSTM) v/s Object-based STM (OSTM)
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Figure 12: (a) Two SCTs T1 and T2 in the form of a tree structure which is working on a

hash-table with B buckets where four accounts (shared data items) A1,A2,A3 and A4 are stored in

the form of a list depicted in (b). T1 transfers $50 from A1 to A3 and T2 transfers $70 from A2 to

A4. After checking the sufficient balance using lookup (l), SCT T1 deletes (d) $50 from A1 and

inserts (i) it to A3 at higher-level (L1). At lower-level 0 (L0), these operations involve read (r) and

write (w) to both accounts A1 and A3. Since, its conflict graph has a cycle either T1 or T2 has to

abort (see (c)); However, execution at L1 depicts that both transactions are working on different

accounts and the higher-level methods are isolated. So, we can prune this tree and isolate the

transactions at higher-level with equivalent serial schedule T1T2 or T2T1 as shown in (d).



Data Structure of SVOSTM to Maintain Conflicts
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Block Graph: Components

• MVOSTM uses multiple versions and satisfies opacity.

• In MVOSTM two types of edges based on mvoconflicts:

1. Return value from (rvf) edge: If STM tryCi () on k by a

committed transaction Ti completed before rvj(k, v) on key k by Tj

in history H such that Tj returns a value v ̸= A then there exist an

rvf edge from Ti to Tj , i.e., Ti → Tj ;

2. Multi-version (mv) edge: consider a triplet, STM tryCi (), rvm(k, v),
STM tryCj() in which (updSet(Ti ) ∩ updSet(Tj) ∩ rvSet(Tm) ̸= ∅),
(two committed transactions Ti and Tj update the key k with value
v and u respectively) and (u, v ̸= A); then

2.1 If STM tryCi () <H STM tryCj () then there exist a mv edge from Tm

to Tj .

2.2 If STM tryCj () <H STM tryCi () then there exist a mv edge from Tj

to Ti .
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Data Structure of MVOSTM to Maintain Conflicts
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Figure 14: Underlying Data Structure of SVOSTM



Single-version v/s Multi-version OSTMs

• Multi-version OSTMs (MVOSTMs) maintain multiple versions for

each shared data item (object) and provide greater concurrency

relative to traditional single-version OSTMs (SVOSTMs).

(d) MVOSTMs

(c) SVOSTMs

(b) Multi−version OSTMs(a) Single−version OSTMs

(SVOSTMs) (MVOSTMs)
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C1 T2T1
T1
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C2 T2
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get1(A, $10) get1(B , $10)

get-transfer

transfer -get

get-transfer

transfer2(A,B , $10) transfer2(A,B , $10)

Figure 15: (a) Transaction T1 gets the balance of two accounts A and B (both initially $10),
while transaction T2 transfers $10 from A to B and T1 aborts. Since, its conflict graph has a cycle

(see (c)); (b) When T1 and T2 are executed by MVOSTM, T1 can read the old versions of A and

B. This can be serialized, as shown in (d).
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Correctness Criteria: Opacity
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Smart Multi-threaded Validator

SMV maintains two global counters (gUC: global update counter and

gLC: global lookup counter) and two local counters (lUC and lLC) for

each shared data item k to identifies the EMB error.

Lookup(k):

• If(k.gUC == k.lUC)

1. Atomically increment the global lookup counter, k.gLC.

2. Increment k.lLC by 1.

3. Lookup key k from a shared memory.

else miner is malicious.

Insert(k, v)/Delete(k):

• If(k.gLC == k.lLC && k.gUC == k.lUC)

1. Atomically increment the global update counter, k.gUC.

2. Increment k.lUC by 1.

3. Insert/delete key k to/from shared memory.

else miner is malicious.

return
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Algorithm 1: SMV(scFun): Execute scFun with atomic global lookup/update counter.

// scFun is a list of steps.

while (scFun.steps.hasNext()) do
curStep = scFun.steps.next(); //Get the next step to execute.

switch (curStep) do

case lookup(k): do

// Check for update counter (uc) value.

if (k.gUC == k.lUCi ) then
Atomically increment the global lookup counter, k.gLC ;

Increment k.lLCi by 1;//Maintain k.lLCi in transaction local log.

Lookup k from a shared memory;

end

else
return ⟨Miner is malicious⟩;

end

end

case insert(k, v): do

// Check lookup/update counter value.

if ((k.gLC == k.lLCi ) && (k.gUC == k.lUCi )) then
Atomically increment the global update counter, k.gUC ;

Increment k.lUCi by 1;//Maintain k.lUCi in transaction local log.

Insert k in shared memory with value v ;

end

else
return ⟨Miner is malicious⟩;

end

end

end

end

Atomically decrements the k.gLC and k.gUC corresponding to each shared data-item key k;

return



// scFun is a list of steps.

while (scFun.steps.hasNext()) do
curStep = scFun.steps.next(); //Get the next step to execute.

switch (curStep) do

case delete(k): do

// Check lookup/update counter value.

if ((k.gLC == k.lLCi ) && (k.gUC == k.lUCi )) then
Atomically increment the global update counter, k.gUC ;

Increment k.lUCi by 1; //Maintain k.lUCi in transaction local.

Delete k in shared memory;

end

else
return ⟨Miner is malicious⟩;

end

end

end

end

Atomically decrements the k.gLC and k.gUC corresponding to each shared data-item key k;

return



Results: BG Depth
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Results: Dependencies in BG
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Results: Average Speedup by Multi-threaded Miner

Table 1: Overall average speedup on all workloads by multi-threaded miner

over serial miner

Multi-threaded Miner

Contract BTO

Miner

MVTO

Miner

SVOSTM

Miner

MVOSTM

Miner

StaticBin

Miner

SpecBin

Miner

Coin 1.596 1.959 4.391 5.572 1.279 6.689

Ballot 0.960 1.065 2.229 2.431 1.175 2.233

Auction 2.305 2.675 3.456 3.881 1.524 2.232

Mix 1.596 2.118 3.425 3.898 1.102 3.080

Total Avg. Speedup 1.61 1.95 3.38 3.95 1.27 3.56



Results: Average Speedup by Smart Multi-threaded Validator

Table 2: Overall average speedup on all workloads by SMV over serial validator

Smart Multi-threaded Validator (SMV)

Contract BTO

SMV

MVTO

SMV

SVOSTM

SMV

MVOSTM

SMV

StaticBin

SMV

SpecBin

SMV

Coin 26.576 28.635 30.344 32.864 5.296 7.565

Ballot 26.037 28.333 33.695 36.698 3.570 3.780

Auction 27.772 31.781 29.803 32.709 4.694 5.214

Mix 36.279 39.304 42.139 45.332 4.279 4.463

Total Avg. Speedup 29.17 32.01 34.00 36.90 4.46 5.26

return
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