
https://bit.ly/AnonCredsSlides

https://bit.ly/AnonCredsSlides

Goals

● Understand verifiable credentials in
general

● Understand AnonCreds unique capabilities
● Experience the steps in using AnonCreds
● Understand (a bit of) the cryptography in

AnonCreds
● See how AnonCreds are used today in a

variety of contexts
● Newly capabilities available with

AnonCreds
● The future of AnonCreds

Takeaways

● How to use AnonCreds in your
applications

● Build frameworks that embed AnonCreds
● Enable rooting AnonCreds in other

ledgers/VDRs
● Contribute to the AnonCreds

implementations
● Contribute to future AnonCreds

specifications and implementations

https://bit.ly/AnonCredsSlides

Part 1

● Online Identity With Verifiable Credentials
● Introduction to Hyperledger AnonCreds
● AnonCreds Data and Processes (Hands

On)
○ Setup
○ Issuing
○ Presenting
○ Revocation

Part 2

● Zero Knowledge Proofs: The High School
Math Edition (time permitting)

● Ledger-Agnostic AnonCreds
● AnonCreds in the W3C VC Data Model

Format
● AnonCreds Exchange using CHAPI
● Making Credentials Beautiful — OCA
● Futures: AnonCreds v2.0

https://bit.ly/AnonCredsSlides

Online Identity
with Verifiable

Credentials
Licensed under the Unsplash+ License

https://unsplash.com/plus/license

The Paper Credential Model

“Proves”:
1. Who issued the credential.
2. Who holds the credential.
3. The claims are unchanged.

Trust?

Credentials and Protocols

Presenting Paper Credentials
Verifiers make trust decisions:

● Technology
○ Is it a legitimate representation?
○ Does it look forged?

● Governance
○ Is the source of the representation trustworthy?
○ Where does their authority come from?
○ Do they have trusted processes?

Credentials in the Digital World? Scan ‘em!!

What is the Verifiable Credentials model?

Proves:
1. Who issued the credential.
2. The claims are unchanged.
3. Who holds the credential.**
4. The claims have not been revoked.*** Still Required:

 Do you trust the Issuer?

Credentials,
Presentations
and Protocols

● OpenIDConnect is the “Login with
Facebook” model

● Same parties:
○ User == Holder
○ Relying Party == Verifier

● The flow is different — one
transaction

● The Issuer is involved in every
interaction

○ We don’t want that!!

VCs Are Different from OpenIDConnect

What is a Verifiable Data Registry?

Verifiable Data Registry

No credential data on the VDR!!!

13

VC Ecosystems — 2023

Meeting Place

W3C
Credentials
Community

Group (CCG)

Hyperledger
Foundation

OpenID
Foundation

ISO mDL
Working Group

Verifiable
credential

“type”

Verifiable
Credentials using
JSON-LD using
Data Integrity

Proofs

Hyperledger
AnonCreds with
ZKPs and VC

JSON-LD

JWT, SD-JWT
and potentially

others
mDL and mdocs

Exchange
Protocols

CHAPI and
VC-API

DIDComm
Messaging and

Aries Data
Exchange
Protocols

OpenID4VCs

OpenID4VCI
OpenID4VCP
and SIOPv2

ISO standards
being developed
for presentation
and issuance

https://bit.ly/AnonCredsSlides

Hyperledger
AnonCreds

Privacy: AnonCreds Zero Knowledge Proofs
● Selective disclosure
● Predicate proofs
● Derived presentations

with unlinkable identifiers
● Multi-credential

presentations

Hyperledger AnonCreds?
● Project at the Hyperledger Foundation
● AnonCreds Specification v1.0

○ Working Group to evolve the specification

● Complete open source implementation in Rust of the AnonCreds specification.
○ Derived from Hyperledger Indy and IDemix from IBM
○ Heavily used for the past 7+ years in the Hyperledger Self-Sovereign Identity (SSI) stack

● Verifiable Data Registry-agnostic
○ AnonCreds objects can be published anywhere

● Working Group defining AnonCreds v2.0

https://hyperledger.github.io/anoncreds-spec/
https://github.com/hyperledger/anoncreds-rs

AnonCreds Capabilities
● All the cryptographic features of any “verifiable credentials” format:

○ Per W3C: Tamper-evident issuer attestations (usually) about a subject

● Application of privacy-preserving ZKP technology
○ Selective disclosure
○ Predicates (“I’m older than 21”)
○ Defined holder-binding mechanism, across multiple credentials
○ No correlatable identifiers shared by holder — including when using revocation

■ Derived presentation vs. sharing VC itself
■ Blinded holder/subject identifier
■ Helpful for Governments: No new identifier for people

No other popular verifiable credential technology
offers all of these capabilities.

Familiar Cryptographic Processing
● Overall basis is CL-Signatures, an RSA-based cryptographic suite
● Canonicalization — signatures are applied to 32-byte integers

○ Rules: Integers remain integers, all other elements are stringified and hashed into integers

● Predicates
○ Uses Bullet Proofs, applicable only to integers, and only 4 expressions supported

● Selective disclosure, no correlatable identifiers
○ Blinded signatures make every presentation unique, with ZKPs to verify signatures

● Linked Secret
○ Pederson Commitment to the holder link secret made in the Offer/Request/Issue interaction
○ Aggregate proof that same linked secret used in all source verifiable credentials in presentation

● Revocation
○ Accumulator-based proof of non-revocation ZKP — credential identifier known to issuer, holder

https://eprint.iacr.org/2001/019.pdf
https://github.com/hyperledger/aries-rfcs/blob/main/features/0592-indy-attachments/README.md#encoding-claims
https://crypto.stanford.edu/bulletproofs/
https://en.wikipedia.org/wiki/Blind_signature
https://asecuritysite.com/encryption/ped
https://github.com/hyperledger/indy-hipe/tree/main/text/0011-cred-revocation

AnonCreds — What Happens?
● Setup

○ Issuer creates AnonCreds Objects — Schema, CredDef, [RevReg]
○ Issuer publishes AnonCreds Objects to ledger Verifiable Data Registry (VDR)
○ Holder creates link secret

● Issuance
○ Issuer - Holder interaction (offer, request)
○ Issuer creates/signs credential

● Presentation
○ Verifier requests presentation
○ Holder constructs presentation (w/revocation)
○ Verifier verifies presentation (reading from VDR)

● Revocation
○ Issuer publishes RevReg State to ledger VDR

https://bit.ly/AnonCredsSlides

AnonCreds:
Data and
Processes

Setup
(with a digression)

Verifiable Data Registry

Publishing Objects

Verifiable Data Registry

Setup — Publishing Schema
● Schema Object

○ List of attributes — example
○ Technically, not needed for the cryptography to work

■ More for the governance — share common schemas, minimize different schemas
■ Make the live of verifiers easier!

○ (Almost) No prescribed metadata, such as in the W3C VC Data Model (e.g., issuanceDate)
● A simple list

○ No complex JSON
■ But could be supported by flattening the data structure…

○ No dynamic arrays
■ Cannot be supported:

● Requirement: A cryptographic element per data value — defined at setup time
■ Needed for use case?

● Only option — make the array an item, with a data:url for the data in each credential

https://indyscan.io/tx/SOVRIN_MAINNET/domain/156911

Setup - Publishing Credential Definition
● Credential Definition

○ List of attributes (again!) — this is why the schema is not really needed for the crypto — example
■ Extra attribute — “master_secret” — called “link_secret” (almost) everywhere.

● Used for holder binding via a “blinded identifier”
○ Issuer keys

■ Including for revocation, if active — we’ll cover revocation later

● With a published credential definition — millions of credentials can be issued
○ NOTHING GOES ON THE LEDGER AT ISSUE TIME!

https://indyscan.io/tx/SOVRIN_MAINNET/domain/156912

Setup — Holder Creates Link Secret
● Identifies the Holder and is (indirectly) put into all credentials they receive
● Implemented as a UUID (unique identifier)
● Handled as a blinded identifier

○ Blinded identifier given to the Issuer to put in a credential
○ Blinded identifier proven to be based on the link secret the Holder knows in a presentation

● Unlinkable, both for Issuers and Holders

Digression: The Verifiable Credential
Holder Binding Issue

The VC “Holder Binding” Issue
● When verifiers receive presentations, they

often want to know the relationship between
the holder (the prover) and the credential

○ Subject vs. Holder
○ “That the credential was issued to the holder”

● In the W3C VC Data Model — holder binding is
currently out of scope

○ Issuer makes tamper-evident attestations about
the subject — that’s it.

○ Anyone can present any VC — it’s up to the
verifier to do holder binding (if it is needed…)

FIgure 10 from the W3C Verifiable Credentials
Data Model Standard, v1.1

Holder Binding — other techniques
● Often, a Holder’s DID (public key) is used to bind a VC to a holder.

○ On issuance
■ Holder provides DID and proof (signature) of control over the DID
■ Issuer verifies signature, inserts DID into credential.

○ On presentation
■ Holder adds a proof that they control the DID in the credential.

○ The Holder DID is a correlatable identifier…

● Could be done in other ways:
○ Well-known mechanism by the issuer
○ Holder must present another piece of ID (perhaps paper) to accompany the VC
○ VC includes a picture of the subject, and that is presented and compared

AnonCreds Holder Binding: The link_secret
● AnonCreds formally defines holder binding

○ All AnonCreds are issued to the holder’s link_secret so only the holder can present the VC
○ The holder SHOULD use the same link_secret for all credentials they receive

■ MUST for all credentials to be presented together
● The AnonCreds link_secret serves the same purpose as the “Holder DID”

○ But blinded, and so is presented as a non-correlatable identifier.
○ Holder to issuer during issuance

■ Request blinded identifier (with nonce) from Issuer
■ Blinded identifier plus proof from Holder to Issuer
■ Issuer inserts blinded identifier into the Credential

● All holders MUST present a ZKP to demonstrate holder binding
○ Presentation includes proof the same link_secret was used for all source VCs.

Lab 1: Preparing and Publishing a Credential
● Preparation Steps link: https://bit.ly/AnonCredsPrep
● Lab 1 link: https://bit.ly/AnonCredsLab1
● Steps:

○ Define a Schema (or two)
○ Publish the Schema

■ Review the published Schema
○ Publish Credential Definition for each schema

■ Review the published Credential Definition

https://bit.ly/AnonCredsPrep
https://bit.ly/AnonCredsLab1

Notes: Schema and Credential Definitions
● Generally, CredDefs must be on the same Ledger/VDR as the Schema

○ Required for Hyperledger Indy
○ Why? Verification of the object by the ledger before writing

● Schema must have an associated “Publisher ID” (often a DID)
● Credential Definition must have an associated “Issuer ID” (often a DID)

Publishing Objects

Verifiable Data Registry

https://bit.ly/AnonCredsSlides

AnonCreds:
Data and
Processes

Issuing
Verifiable Data Registry

Issuing Credentials

Verifiable Data Registry

Issuing
● Three step process:

○ Offer — from Issuer to Holder
■ What type of credential is to be issued.

● Key correctness proof.
■ A nonce for Issuer non-correlatibility.

○ Request — from Holder to Issuer
■ Blinded link secret.
■ Key correctness proof about link secret.
■ Entropy for credential.

○ Issue — from Issuer to Holder
■ The verifiable credential.

Aries Specific Processing

● RFC 0453 Issue Credential Protocol
○ General purpose issue credential protocol.

■ Not specific to AnonCreds, but useful.
○ A DIDComm Messaging Protocol, so how data

moves is defined.

● Additions:
○ Proposal — from Holder to Issuer

■ Allows holder to initiate process.
■ Allows for negotiation.
■ Includes data for the credential.

○ Offer
■ Includes data for the credential.

https://github.com/hyperledger/aries-rfcs/blob/main/features/0453-issue-credential-v2/README.md

AnonCreds
Credential
Data Model

{
"schema_id": "3av…s8W:2:fabername:0.1.0",
"cred_def_id": "3av…s8W:3:CL:13:default",
"rev_reg_id": null,
"values": {

"given_name": {
"raw": "Alice Jones",
"encoded": "728…2918"

}
},
"signature": {

"p_credential": {
"m_2": "5783…397",
"a": "203…785",
"e": "259…767",
"v": "626…819"

},
"r_credential": null

},
"signature_correctness_proof": {

"se": "163…839",
"c": "546…523"

},
"rev_reg": null,
"witness": null

}

Raw and Encoded Values
● “raw” values are the attributes
● “encoded” values canonicalized attribute values as integers.

○ Only the encoded values are what is actually signed in an AnonCreds presentation.
○ Canonicalization rules:

■ Unsigned integers or integer strings are left as is.
■ Everything else is stringified and SHA256 hashed into an integer.

● This is why only integers can be used in predicates — hashes are not sortable.

● Both “raw” and “encoded” values are included in credentials and
presentations.

○ Issue: What if the issuer uses a different canonicalization scheme?
○ Issue: Verifier must make check that the encoded values are properly encoded (not forged).

● In future, encoding will be built into AnonCreds vs. handled by Issuer/Holder.

Lab 2: Issuing Credentials
● Lab 2 link: https://bit.ly/AnonCredsLab2
● Steps:

○ Pick a Connection
○ Pick a Credential Definition
○ Fill in the Data (Click “Enter Credential Value” in Traction for UI)
○ Issue the Credential
○ In Wallet: Accept the Credential

https://bit.ly/AnonCredsLab2

Issuing Credentials

Verifiable Data Registry

https://bit.ly/AnonCredsSlides

AnonCreds:
Data and
Processes
Presentation

Verifiable Data Registry

Presenting Proofs

Verifiable Data Registry

Presentation Request / Presentation Flow
● Verifier to Holder — “This is what I need from you”
● Request/response model

○ Verifier asks for what they need
○ Holder constructs a presentation based on what credentials they are holding
○ Cryptography is verified

● Note that verifiable credentials are not given to the verifier
○ A presentation is derived from the source credentials

https://www.plantuml.com/plantuml/img/TOyn3i8m34LtJc69EHVeq84ECA9Mwa8P0lcL8WL7ECd0xIcb0Gfbi-JtxFzRYEqjHAcodSQ2Ae6EeBqWWAEErdF7DQu98QuofWvhWJcgSkUTWL114p7pLi_jBrnvvt2Er2GRzScXu-6h6JIhNSZM6z-28T-XgEDU_8KMpFmlfnrED60pp_QgyecDu-qFk71sau9bX41rUhHejRDcjEu0

Request Presentation Components
● Requested Data:

○ Requested Attributes — groups of attributes from a single source credential
○ Requested Predicates — true/false numeric expressions (no strings!!)

■ Built from an attribute, a value and an operator — one of “<”, “<=”, “>”, “>=”
■ Works great for dates, but they MUST be integers — “dateint” or “Unix Time”

● Restrictions — logical AND/OR expression about acceptable source credentials
● Revocation intervals, combining both

○ Request for proof of non-revocation for some/all source credentials
○ Acceptable time period for proving non-revocation

■ “Was your insurance credential valid on June 26, 2021 when the accident occured?”
■ “I’m offline, but I have revocation registry info from last week to yesterday”

Example
Presentation Request

Presentation Request Restrictions
● Logical equality expressions, ANDed and

ORed together (Specification section)
● Basic elements:

○ Schema Publisher Identifier
○ Schema Identifier (DID)
○ Schema Name
○ Schema Version
○ Issuer Identifier (DID)
○ Credential Definition Identifier
○ Credential Attribute Name
○ Credential Attribute Value

● Example:

 "restrictions": [
 {
 "schema_name": "student id",
 "schema_id": "0.1.1",
 "schema_did": "<DID>",

 "issuer_did": "<DID>",
 "issuer_did": "<DID>"
 },
 {
 "schema_name": "student id",
 "schema_id": "2.1.1",
 "schema_did": "<DID>",

 },
]

ANDs

OR

ANDs

https://hyperledger.github.io/anoncreds-spec/#restrictions

Date Predicates
● Must have date as an integer

○ dateint — Integer YYYYMMDD
■ 20230531 or 20,230,531

○ Unix Time — seconds since Jan 1, 1970
■ Start of Workshop: 1685545200

● Example:

● Example:

● Does NOT work with an ISO (string) Date!

Holder Presentation Generation
● Receive (somehow…) the Presentation Request
● Search in secure storage (aka wallet) for credentials to satisfy the request

○ Each attribute group must come from the same source credential.
○ Multiple request/predicate groups may come from the same credential
○ Business logic to decide if not found or if multiple credentials found for a group.

● As needed, get credential definitions and revocation registry data.
● Generate a presentation from the request and the source credentials

○ For each source credential:
■ Generate a proof across all encoded attributes in the credential
■ If necessary, generate a non-revocation proof
■ Reveal attributes (raw values)
■ Generate a proof per predicate

○ Generate the aggregate proof using the link secret for each credential — must all use same LS

Presentation Verification
● Four levels:

○ Cryptographic verification — do all of the proofs verify?
■ Credentials, predicates, non-revocation proofs and the aggregate proof

○ Adherence to the Presentation Request
■ Were all the groups satisfied?
■ Was the revocation interval satisfied?

○ Agent framework processing
■ More verification of the presentation against the presentation request

● Unrevealed attributes
● Raw values matching the encoded values (should be in the first level!)

○ Business logic
■ Is the presentation sufficient for the business purpose?
■ Do we trust the issuer?

“Trust the Issuer” Handling
● Pre-verification in the Presentation Request

○ Restrictions in presentation request limit credentials from specific, trusted issuer(s)
○ Example: The only issuer of a specific type of credential
○ Example: Government IDs from specific jurisdictions

● Post-verification
○ Restrictions limit credentials based on attributes/schema, but allow credentials from any issuer

■ Problem: Anyone can be an issuer, use the schema, and issue themselves a credential.
○ Solution:

■ After in the business verification, check the issuer
● Local list — same as built-in, but not expressed in presentation request (e.g., too

many)
● Trust registry — trusted, external list of trusted issuers
● Dynamically — as new issuers are encountered, have humans verify them.

Lab 3: Issuing Credentials
● Lab 2 link: https://bit.ly/AnonCredsLab3
● Steps:

○ Pick a Connection
○ Pick a Credential Definition
○ Fill in the Data (Click “Enter Credential Value” in Traction for UI)
○ Issue the Credential
○ In Wallet: Accept the Credential

https://bit.ly/AnonCredsLab3

Presenting Proofs

Verifiable Data Registry

https://bit.ly/AnonCredsSlides

AnonCreds:
Data and
Processes
Revocation

(briefly)

Verifiable Data Registry

Revocation

Verifiable Data Registry

Revocation
● An issuer issues a credential, and later decides to revoke it.
● Why?

○ The credential is no longer accurate.
■ Data has changed in the credential — e.g., change of address.
■ Holder’s authorization to use the credential has changed — e.g., loss of driver privileges.
■ Someone made a mistake in issuing the credential.

○ Note: Expiration can be handled separately without revocation. Put in an “expires” attribute.

● Action is unilateral by the Issuer, perhaps with a notification to the Holder.
● Revocations are published somewhere accessible to parties needing them.
● Verifier can detect revocation in subsequent presentations.

○ Depending on the revocation scheme, a verifier may be able to monitor revocations.

AnonCreds Revocation
● At the AnonCreds level — the most complicated part

○ AnonCreds 1.0 Revocation works, but is not great — does not scale very well for huge use
cases

○ Relatively easy for the Holder and Verifier, but lots of work for the Issuer!

● Mechanism: Accumulator-based Non-Revocation Proof
○ Holder proves their credential is not revoked, WITHOUT revealing the ID of their credential.
○ How?

■ A large prime number is associated with every credential in a Revocation Registry
■ Accumulator is the modulo product of the primes of all unrevoked credentials
■ Holder creates ZKP using their prime, their witness, and the (published) accumulator

● Their witness is the modulo product of all unrevoked of the primes of all unrevoked
credentials except their prime

■ Verifier can verify the proof — and hence, the credential is not revoked.

Issuer Revocation Activities
● For Issuers: Frameworks simplify the activities — e.g. Aries Cloud Agent Python

○ When creating a Credential Definition, flag “Use Revocation”, and the RevReg size.
○ On issuing credentials, track the “RevocationID” for later use.
○ When needed revoke a holder’s credential, use their “RevocationID”.
○ When needed, publish revocations — as they happen, or periodically (e.g., daily).

● For Holders:
○ Retrieve the “tails file” for their RevReg
○ When creating a presentation for a source credential, retrieve a RevRegEntry (state) from the

VDR.
○ AnonCreds does the rest — creating a Non-Revocation Proof to include in the presentation.

● For Verifiers:
○ Retrieve the RevRegEntry the Holder used from the VDR.
○ AnonCreds does the rest — verifies the Non-Revocation Proof.

■ No correlatable identifier given.
■ No way to monitor the revocation state of the credential going forward.

Frameworks Hide Revocation Complexity
● Each RevReg is a limited size (number of credentials)

○ When credentials in a RevReg are used, must create a new RevRef before issuing more
credentials.

○ ACA-Py keeps track of RevReg usage, creates one RevReg ahead, and the issuer is never runs
out.

● A “tails file” per RevReg must be published for the holder to download
○ ACA-Py handles that, along with a specialized “Tails Service”

● When publishing revocation batches for a type of credential, an Issuer may
have to write multiple RevRegEntries (updates)

○ ACA-Py tracks unpublished revocations across all revocation registries for a CredDef

Limitations of AnonCreds 1.0 Revocation
● The Tails File holds all of the primes for the RevReg.
● Must be retrieved by the Holder, often a mobile wallet app.

○ Limited bandwidth, limited storage

● Tails file increase in size linearly with the number of credentials in the RevReg.
○ 1000 Credentials / 250k file, 10000 / 2.5M file, etc.

● Practical limit is about 5,000-10,000 credentials per RevReg.
● Can have many RevRegs for a Credential type (so still unlimited credentials)

Additional AnonCreds v1.0 Revocation
Details
● Handling of the presentation request “revocation_interval”

○ Semantics
○ Best practices

● Verification that a given presentation is within the “revocation_interval”
● Handling revocation interval when a source credential does not support

revocation, and vice versa
○ Verifier may not know if holder’s credentials is revocable or not.

■ E.g. Request “degree” credential issued by many universities.
■ Some may support revocation, others may not
■ Verifier does not know what credential the holder might have - revocable or not.
■ Presentation should work regardless!

Need more information on AnonCreds Revocation? Let me know…

https://bit.ly/AnonCredsSlides

Hyperledger
AnonCreds
Workshop
End of Part 1

https://bit.ly/AnonCredsSlides

Hyperledger
AnonCreds
Workshop

Part 2

ZKPs — using High School Math
● Back to basics!
● Slides
● Recording

https://docs.google.com/presentation/d/1wj8y2mNJhWBOYpA4SVMdoZg9AbNlHhv48IxrcHQDC1s/edit?usp=share_link
https://youtu.be/XhID5fuFpL8?t=766

https://bit.ly/AnonCredsSlides

Ledger-Agnostic
AnonCreds

Verifiable Data Registry

Hyperledger Indy
● Historically, AnonCreds has been used primarily with Hyperledger Indy

○ Sovrin, IDunion, CANdy, FINdy, Swiss Test Instance, Indicio, BCovrin, etc.

● Indy was the “all-in-one” ledger+vc format+agents
● Aries agent portion extracted out in 2018
● AnonCreds extracted out in 2022
● Specification work revealed that there was little tying AnonCreds to Indy

○ Many were using AnonCreds independent of Indy

● In extracting the AnonCreds implementation from Indy, it was made
“ledger-agnostic” — independent of Indy

VDR-Agnostic AnonCreds Architecture

https://bit.ly/AnonCredsSlides

Ledger-Agnostic
AnonCreds
Rodolfo Miranda,

RootsID

AnonCreds in W3C VC Data Model Format
● Long a controversy in the verifiable credentials community.

○ AnonCreds does not use the W3C VC Data Model Format.

● Several initiatives have been started to align the models.
○ Most significant one (“Rich Schemas”) fizzled out because it added lots of complexity.

● What to do?

AnonCreds &
the W3C VC Data Model

AnonCreds to W3C VC Format, and Back
● It turns out…putting AnonCreds in W3C VC Format is pretty easy…
● Proof of Concept (code and examples):

○ AnonCreds Credential into W3C VC Data Model Standard into AnonCreds Credential
○ AnonCreds Presentation into W3C VP Data Model Standard into AnonCreds Presentation

● Done by moving around JSON
○ Signature on VC and VP contain identical data to AnonCreds Credential/Presentation
○ AnonCreds canonicalization, signing, creating presentation, verifying presentation stay the

same
○ All features of AnonCreds fully supported

https://github.com/andrewwhitehead/anoncreds-w3c-mapping

AnonCreds ⇆ W3C
{

"schema_id": "3av…s8W:2:fabername:0.1.0",
"cred_def_id": "3av…s8W:3:CL:13:default",
"rev_reg_id": null,
"values": {

"name": {
"raw": "Alice Jones",
"encoded": "728…2918"

}
},
"signature": {

"p_credential": {
"m_2": "5783…397",
"a": "203…785",
"e": "259…767",
"v": "626…819"

},
"r_credential": null

},
"signature_correctness_proof": {

"se": "163…839",
"c": "546…523"

},
"rev_reg": null,
"witness": null

}

{

 "@context": [

 "https://www.w3.org/2018/credentials/v1",

 "https://bit.ly/anoncreds-context",

 { "@vocab": "urn:anoncreds:attributes#" }

],

 "type": [

 "VerifiableCredential",

 "AnonCredsCredential"

],

 "issuer": "did:sov:3avoBCqDMFHFaKUHug9s8W",

 "issuanceDate": "2022-12-15T01:17:32Z",

 "credentialSchema": {

 "type": "AnonCredsDefinition",

 "id": "did:sov:3avo...9s8W:3:CL:13:default",

 "schema":

"did:sov:3avo...9s8W:2:fabername:0.1.0"

 },

 "credentialSubject": {

 "name": "Alice Jones"

 },

 "proof": {

 "type": "CLSignature2022",

 "encoding": "auto",

 "signature": "AAAgf9w5..."

 }

}

Crypto-Agility
● VC Crypto-Agility — adding multiple types of signatures to a credential

○ Flexibility and long term vulnerability protection (e.g. NIST-approved + Ed25519 +
Quantum-safe)

● Works with AnonCreds (PoC carried out)
○ Convert AnonCreds Credential to W3C VC Data Model Standard format, with AnonCreds

Signature
○ Pass to a LD-Signature library to generate, add signatures to VC

● Result: Present VC using AnonCreds or not
○ Generate an AnonCreds presentation, with all it’s privacy-preserving goodness
○ Present the VC directly using one or more LD-Signatures (but no AnonCreds capabilities)

● Enabled by
○ An AnonCreds JSON-LD context and format for the AnonCreds credential that enables

compliant JSON-LD processing to create a signature.

https://bit.ly/AnonCredsSlides

AnonCreds and
CHAPI

Patrick St-Louis,
Digital Identity Lab of Canada

Laboratoire d'identité numérique
du Canada
idlab.org

https://www.idlab.org/en/

https://bit.ly/AnonCredsSlides

AnonCreds and
Overlays Capture

Architecture
Making Credentials

Beautiful!

Verifiable Credential Metadata
● Problem: AnonCreds provides little metadata about credentials

○ Issuer DID, but no standardized way to get more information about the issuer (name,
description)

■ Self-asserted “Alias” on the DIDComm connection between the holder and the issuer
○ Name and version of Schema object

■ Schema is a simple list of attributes (e.g. “given_name”, “family_name”, “birth_dateint”,
etc.)

○ Credential Definition — an object created by an Issuer that enables issuing credentials using a
schema object

■ Only remotely human identifier is a tag and link to the schema object
● Issuer Branding? Nothing!

How can we present beautiful, multilingual
credentials with so little data?

Focus for now is on

AnonCreds verifiable

credentials in Aries.

https://indyscan.io/tx/SOVRIN_MAINNET/domain/155297
https://indyscan.io/tx/SOVRIN_MAINNET/domain/155298

Overlay Capture Architecture (OCA)
Specification

Image courtesy the Human Colossus Foundation

https://humancolossus.foundation/

OCA Overlay
Format

● Dataset-based, rather than
attribute-based as is JSON-LD

● JSON
○ Array of overlays
○ Overlays can be in separate files

● Each overlay has a hash to link to
“Capture Base”

○ A “SAID” Self-Addressing ID
● In some overlays, country-language code
● In most overlays, an attributes list from the

capture base with a value per attribute

{
 "capture_base": "EfeQ…t0cNsc",
 "type": "spec/overlays/label/1.0",
 "language": "fr",
 "attr_labels": {
 "given_name": "Nom",
 “family_name": "Prénom",
 "birth_dateint": "Date De Naissance",
 "parent_1_name": "Nom Du Parent 1",
 "parent_2_name": "Nom Du Parent 2",
 "issued_dateint": "Date D'Émission",
 "expiry_dateint": "Date D'Expiration",
 "photo": "Photo"
 }
}

Challenge: Delivering OCA Bundles
● Options

○ Could be published by Schema Publisher — example Canadian “Person” credential, where
issuers are Provinces.

○ Could be the Issuer.
○ Could be an independent party that the Wallet trusts — creates OCA Bundles on behalf of

issuers.
○ Likely to be a single party — we don’t expect to collect overlays published by multiple parties.

● Several options for publishing OCA bundles considered.
○ Linked into the Credential (e.g. a hashlink)
○ Delivered with the Credential
○ Put on a ledger

● Short term decision…

OCA Bundle GitHub Repository
● Initial cut in the BCGov GitHub organization: aries-oca-bundles but intended for wider

use (Canada, Aries)
○ With an understanding that this will only get us so far — a year or two would be great…

● Defines some governance:
○ Repository “Editors”, have a similar role to Open Source Maintainers in processing pull requests (PRs)

■ PR is an OCA Bundle from an “authorized” community member (“human” verification)
■ The OCA Bundle matches the schema (which is a real AnonCreds schema)
■ Images are actually images, etc.

○ Enforce that some needed metadata about the OCA Bundle is provided — e.g., submitting org,
authorized updaters

○ Don’t enforce anything about the credential format or OCA Bundle content — translations, colours, etc.
● Tools

○ Generate OCA Bundle from source files — Excel and Branding JSON file
○ Generate a list of OCA Bundles in the repository for download — Identifier + path to OCA Bundle
○ OCA Explorer

https://github.com/bcgov/aries-oca-bundles
https://github.com/bcgov/aries-oca-bundles/blob/main/GOVERNANCE.md

OCA Explorer

Click Image to Open

https://bcgov.github.io/aries-oca-bundles/
https://bcgov.github.io/aries-oca-bundles/

https://bit.ly/AnonCredsSlides

AnonCreds v2.0
What’s Coming?

AnonCreds v2.0
● A working group started in early 2023 to define “AnonCreds Next”

The goal of AnonCreds v2.0 is to retain and
extend the privacy-preserving features of

AnonCreds v1.0, while improving capabilities,
performance, extensibility, and security.

AnonCreds 2.0: Expectations
● Enable support for richer ZKP capabilities, beyond predicates.

○ Range proofs — “My salary is between $50,000 and $80,000”
○ Enumerations — “I live in one of a set of countries”
○ Encrypted Identifiers — “Here is my encrypted, unlinkable Credit Card number”
○ ZKP Attribute Equality — “Prove these attributes are the same, without revealing them”

● Enable the use of different underlying cryptographic signatures.
○ Most likely BBS+ or PS Signatures.

● Scalable revocation.
○ Urgently needed — may come before the rest. Help wanted!!

● W3C Verifiable Credentials Data Model Standard format.
● DIF Presentation Exchange for Presentation Request, Presentation formats.
● Relatively small changes in the Data Objects, and Data Models.

○ E.g., Same objects (perhaps with one more), same relationships.

https://bit.ly/AnonCredsSlides

Wrap Up
Where to go next?

https://bit.ly/AnonCredsSlides

Goals

● Understand verifiable credentials in
general

● Understand AnonCreds unique capabilities
● Experience the steps in using AnonCreds
● Understand (a bit of) the cryptography in

AnonCreds
● See how AnonCreds are used today in a

variety of contexts
● New capabilities available with AnonCreds
● The future of AnonCreds

Takeaways

● Use AnonCreds in your applications
● Build frameworks that embed AnonCreds
● Enable rooting AnonCreds in other

ledgers/VDRs
● Contribute to the AnonCreds

implementations
● Contribute to future AnonCreds

specifications and implementations

Using AnonCreds
● Use one of the Hyperledger Frameworks, and you have full AnonCreds

support
○ Aries Cloud Agent Python
○ Aries Framework JavaScript
○ Aries VCX
○ Mobile Wallet: Aries Bifold

● Look at the various Aries commercial offerings that support AnonCreds
● Join the Hyperledger Discord community, with channels on Aries and

AnonCreds
● edX courses:

○ LFS 172x - Introduction to Hyperledger Self-Sovereign Identity Blockchain Solutions
○ LFS 173x - Becoming an Aries Developer

https://aca-py.org/
https://aries.js.org/guides
https://github.com/hyperledger/aries-vcx
https://github.com/hyperledger/aries-mobile-agent-react-native
https://discord.com/invite/hyperledger
https://www.edx.org/course/introduction-to-hyperledger-sovereign-identity-blockchain-solutions-indy-aries-and-ursa
https://www.edx.org/course/becoming-a-hyperledger-aries-developer

Build Frameworks that Embed AnonCreds
● Open Source Aries Frameworks (listed previously)

○ Join the Aries community working groups/calls — Aries and AnonCreds

● Your proprietary framework — add AnonCreds!
● Add support for AnonCreds beside other credential formats

https://lists.hyperledger.org/g/aries/calendar
https://lists.hyperledger.org/g/anoncreds/calendar

Enable Rooting AnonCreds In Other VDRs
● Follow the lead of others in supporting AnonCreds on VDRs:

○ Hyperledger Indy
○ cheqd.io
○ Cardano
○ Juno Network — NYMLAB added an AnonCreds verifier into an onchain smart contract
○ did:web
○ and more…

https://www.nymlab.it/

Contribute to Current Hyperledger AnonCreds
● Main page
● Meetings calendar
● AnonCreds v1.0 Specification
● AnonCreds v1.0 Implementation — Rust, plus wrappers
● CL Signatures Implementation — Rust

https://www.hyperledger.org/use/anoncreds
https://lists.hyperledger.org/g/anoncreds/calendar
https://hyperledger.github.io/anoncreds-spec/
https://github.com/hyperledger/anoncreds-rs
https://github.com/hyperledger/anoncreds-clsignatures-rs

Contribute to Next Hyperledger AnonCreds
● AnonCreds v2.0 Specification — early days
● Key Projects:

○ AnonCreds in W3C Format
○ Scalable, ZKP-based Revocation

https://github.com/hyperledger/anoncreds-spec-v2

https://bit.ly/AnonCredsSlides

Thanks for
Joining Us!

