
Operate and Extend
Hyperledger Besu

Hyperledger Foundation workshop

March 21st, 2023

Welcome!

Operation session (8AM to 10AM Pacific)

● 30 minutes intro to Besu - what it does, how it works
● 30 minutes on Besu configuration - environment variables,

toml file, cli flags, hidden flags. Docker vs binary
installation.

● 60 minutes on running a Besu network
● 15 minutes on Besu in dev mode, curl, easy first

steps.
● 15 minutes on Genesis block generation
● 30 minutes on consortium creation, with

monitoring and health report, with a Docker
compose.

Developer session (10AM to Noon Pacific)

● 20 minutes on Besu and Github - source (3 repos), issues, PRs,
code checkout, CI.

● 20 minutes on setting up with an IDE. Run and compile with
Gradle. Checks and validations in place with spotless and
errorprone.

● 20 minutes on the main repository content, describing types of
tests in place, showing the tree of dependencies between Gradle
modules.

● 30 minutes on adding an opcode to the EVM: show how to add a
new opcode, add to the next hard fork revision, how to test it.

● 30 minutes on how to add a new JSON-RPC method, add tests and
docs.

https://wiki.hyperledger.org/display/events/Operate+and+Extend+Hyperledger+Besu+Workshop

Prerequisites

Install:
● Java
● Git
● Docker
● Docker-Compose
● Your favorite IDE

Download:
● Besu sources
● Quorum Dev Quickstart

https://wiki.hyperledger.org/display/events/Operate+and+extend+Hyperledger+Besu+Workshop+Prerequisites

Besu, Public Networks, & The Merge -
What’s Next

What do you want to learn about the future of Besu,
staking, & Ethereum public networks?

Help us shape Besu and determine the topics for the next
rounds of workshops by filling out this quick survey (only 7
questions)!

Matt Nelson,
Besu Product

Manager,
ConsenSys
Protocols

https://docs.google.com/forms/d/e/1FAIpQLScIIl7Ol_ZltFWQLI90tILtRoMwInuChnt2hsGGxbIS3nP90g/viewform

© 2022 SPLUNK INC.

Senior Engineering Manager | Splunk

Antoine Toulme

Ethereum

● Second largest crypto by
market capitalization

● Started in 2014
● Many different clients
● Instead of a single

application, a
programmable layer that
executes smart contracts

○ EVM

The Enterprise

● As in - existing businesses
● Well supported client
● Different approach to

deployments
○ Consensus is different
○ Everything permissioned

● Security!
○ Data management
○ Audits

Quorum
First take on an enterprise Ethereum client

Built by JPMC, eventually owned by ConsenSys

Using a private enclave to host data, private transactions and state

Using new consortium consensus algorithms: RAFT, IBFT

Using a fork of Geth

A contribution of ConsenSys in 2019
Formerly named Pantheon
Java-based mainnet client for Ethereum
Supports enterprise requirements

The Hyperledger Greenhouse

Ethereum client - high level

● Misnomer for a server, a peer-to-peer agent
● Runs as a single process
● Independent

○ Can perform all exchanges
○ Can submit transactions
○ Can interrogate the chain

Complex software stack

Besu as a database

Source: https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-2/

● Using RocksDB storage
● Multiple stores
● Here is why:

Besu as a transaction pool

Besu network for Ethereum

● Each client is completely independent, so it requires configuration.
○ A genesis block
○ A consensus engine
○ Bootnodes to discover other peers

Besu discovery

● Connect to other nodes using UDP-based messages
○ First to bootnodes, then all peers exposed by them

● Store peers into buckets to avoid eclipse attacks
○ Use a Kademlia hashtable

● New discovery mechanism using DNS
○ Indexing from a bootnode on a regular basis
○ Easy to download and check integrity

● Static peering
○ Set enodes as part of configuration
○ enode://6f8a80d14311c39f35f516fa664deaaaa13e85b2f7493f37f6144d86991ec012937307647bd3b9a82abe2974e14072

41d54947bbb39763a4cac9f77166ad92a0@10.3.58.6:30303?discport=30301

Besu network client

● Using devp2p, embedding node identity
○ Send HELLO message to other nodes
○ Negotiates subprotocols such as eth (others exist such as Whisper, or

IBFT)

Besu as part of consensus

Clique

IBFT

Ethash (PoW)

PoS (the merge)

JSON-RPC server

HTTP
● Supports batching
● Used by wallets such as

Metamask

IPC
● Using a file socket
● Can be used to attach to

the client with geth
● Most secure option
● Just added to Besu in

April!

WS
● Web socket
● Great for subscriptions
● New events and logs

{
"jsonrpc":"2.0",
"method":"web3_clientVersion",
"params":[],
"id":1

}

GraphQL
● Versatile API
● Allows to query specific data

from the chain

In recap

One more thing…
Ethereum is special because of the EVM.
But where does that play out?

● Validate blocks
● Update the world state
● Create our own blocks by executing transactions

Questions?

Configuring Hyperledger
Besu

Hyperledger Foundation workshop

July 14th, 2022

Hyperledger Besu configuration

Great docs here! https://besu.hyperledger.org/en/stable/Reference/CLI/CLI-Syntax/

Supports command line arguments, env variables, config file - with that order
of priority.

https://besu.hyperledger.org/en/stable/Reference/CLI/CLI-Syntax/

First options

Network --network=dev
--network=ropsten

Data --data-path=folder

P2P --p2p-host=localhost
--p2p-port=30303

Discovery --enabled=true
--bootnodes=...

JSON-RPC

Enablement and APIs
By default JSON-RPC is not enabled. Open it up with --rpc-http-enabled.
--rpc-http-api allows to select which APIs to open:
The available API options are: ADMIN, CLIQUE, DEBUG, EEA, ETH, IBFT, MINER, NET, PERM, PLUGINS, PRIV, QBFT, TRACE,
TXPOOL, and WEB3. The default is: ETH, NET, WEB3.

JSON-RPC spec https://ethereum.github.io/execution-apis/api-documentation/

https://ethereum.github.io/execution-apis/api-documentation/

Hidden flags

Unstable options, hidden flags are represented with the --X prefix.
$> besu --Xhelp

Ways to run Besu
Download the distribution From Github

https://github.com/hyperledger/besu/releases

Homebrew brew install besu

Docker docker pull hyperledger/besu

From source: ./gradlew assemble

OS support: x86 with native libraries
ARM support - M1 support in progress

https://github.com/hyperledger/besu/releases

Advanced options
Genesis file --genesis-file=<genesis.json>

Use a custom Genesis file

RPC security --rpc-http-host
--rpc-http-cors-origins
--rpc-http-tls-client-auth-enabled
--rpc-http-authentication-jwt-public-key-file
--rpc-http-authentication-credentials-file

Metrics ---metrics-enabled
---metrics-port and ---metrics-host
--metrics-protocol

Miner --miner-enabled
--miner-stratum-enabled
--miner-coinbase

Exercises - running with --network=dev
Check out Besu and run with --network=dev --rpc-http-enabled
Check out the genesis file here:
https://github.com/hyperledger/besu/blob/main/config/src/main/resources/dev.json
From the command line, check the balance of an address with:
curl http://localhost:8545/ \

 -X POST \

 -H "Content-Type: application/json" \

 --data '{

 "method":"eth_getBalance",

 "params":["0x627306090abaB3A6e1400e9345bC60c78a8BEf57", "latest"],

 "id":1,

 "json-rpc":"2.0"

 }'

https://github.com/hyperledger/besu/blob/main/config/src/main/resources/dev.json

Exercises - Genesis file specification

Following the tutorial:
 https://besu.hyperledger.org/en/stable/Tutorials/Private-Network/Create-IBFT-Network/

https://besu.hyperledger.org/en/stable/Tutorials/Private-Network/Create-IBFT-Network/

Exercises - Quorum Dev Quickstart

ConsenSys has created a tool to generate complex Besu networks, with the option
to use private enclaves, and monitoring tools of your choice.
Use npx quorum-dev-quickstart to get started.

Questions?

