FireFly HYPERLEDGER

updates &~ FIREFLY

Community Call
Date: Wednesday 14th Dec 2022

Antitrust Policy Notice

Linux Foundation meetings involve participation by industry competitors, and it is the
intention of the Linux Foundation to conduct all of its activities in accordance with
applicable antitrust and competition laws. It is therefore extremely important that
attendees adhere to meeting agendas, and be aware of, and not participate in, any

activities that are prohibited under applicable US state, federal or foreign antitrust and
competition laws.

Examples of types of actions that are prohibited at Linux Foundation meetings and in
connection with Linux Foundation activities are described in the Linux Foundation
Antitrust Policy available at http://www.linuxfoundation.org/antitrust-policy. If you have
questions about these matters, please contact your company counsel, or if you are a
member of the Linux Foundation, feel free to contact Andrew Updegrove of the firm of
Gesmer Updegrove LLP, which provides legal counsel to the Linux Foundation.

{7 HYPERLEDGER

Agenda

1. New FFCAPI for querying blockchain balances
2. Improving efficiency of blockchain receipt handling

3. Proposal for Policy Engine changes

1.

FFCAPI - New AddressBalance() function

/gastoken/balance/{address}

firefly-evmconnect micro service

firefly-transaction-
manager

AddressBalance()

>

firefly-evmconnect FFACPI
implementation

eth_getBalance()

>

1. FFCAPI - New AddressBalance() function

FFCAPI Interface (pkg/ffcapi/api.go in hyperledger/firefly-transaction-manager)

type API interface {

// AddressBalance gets the balance of the specified address
AddressBalance (ctx context.Context, req *AddressBalanceRequest) (*AddressBalanceResponse, ErrorReason, error)

// BlockInfoByHash gets block information using the hash of the block
BlockInfoByHash (ctx context.Context, req *BlockInfoByHashRequest) (*BlockInfoByHashResponse, ErrorReason, error)

NextNonceForSigner (ctx context.Context, req *NextNonceForSignerRequest) (*NextNonceForSignerResponse, ErrorReason,

// BlockInfoByNumber gets block information from the specified position (block number/index) in the canonical chain currently known to the local node

BlockInfoByNumber (ctx context.Context, reqg *BlockInfoByNumberRequest) (*BlockInfoByNumberResponse, ErrorReason, error)

// NextNonceForSigner is used when there are no outstanding transactions for a given signing identity, to determine the next nonce to use

error)

1. FFCAPI - New /gastoken/balances/{address} route

FFTM Route (pkg/fitm/route_get _address_balance.go in hyperledger/firefly-transaction-manager)

return &ffapi.Route(

Name : "getBalance",
Path: "/gastoken/balances/{address}", —
Method: http.MethodGet,

PathParams: []*ffapi.PathParam{

{Name: "address", Description: tmmsgs.APIParamSignerAddress},

}l

JSONHandler: func(r *ffapi.APIRequest) (output interface{}, err error)

return m.getLiveBalance (r.Req.Context(), r.PP["address"])
}I

{

API path calls out that the balance is related to
the gas currency for the chain, nothing to do
with tokens/contracts

1. FFCAPI - AddressBalance() implementation

evmconnect implementation (internal/get_address_balance.go in hyperledger/firefly-evmconnect)

func (¢ *ethConnector) AddressBalance (ctx context.Context, req *ffcapi.AddressBalanceRequest) (*ffcapi.AddressBalanceResponse, ffcapi.ErrorReason,
var addressBalance ethtypes.HexInteger

var blockTag = req.BlockTag

if blockTag == "" {

blockTag = "latest"
}
err := c.backend.CallRPC(ctx, &addressBalance, "eth_getBalance", req.Address, blockTag)
if err != nil {

return nil, "", err.Error()

return &ffcapi.AddressBalanceResponse{

Balance: (*fftypes.FFBigInt) (&addressBalance),
}, ", nil

error)

{

2. Blockchain connector receipt handling improvements

Current behaviour

3. (Optional) API queries for
blockchain operation from
FF core

<

/api/v1/operations/{operationid}

Large JSON payload

firefly-core micro service

C >

1. Submit transaction

2. WebSocket receipt updates

Large JSON payload

e.g. firefly-evmconnect micro service

firefly-transaction-
manager

firefly-evmconnect FFACPI
implementation

Downsides

1. Unnecessarily chatty between connector and FireFly core
2. FireFly core stores a lot of extra information that might never be
needed

3. Data stored by the connector is duplicated

2. Blockchain connector receipt handling improvements

Proposed behaviour

3. (Optional) API queries
for blockchain operation
from FF core

firefly-core micro service

<

/api/v1/operations/{operationid}

Minimal JSON payload

1.

Submit transaction

2. WebSocket receipt updates

Minimal JSON payload

firefly-evmconnect micro service

firefly-transaction-
manager

firefly-evmconnect FFACPI
implementation

2. Blockchain connector receipt handling improvements

Proposed behaviour

3. (Optional) API queries for
blockchain operation from FF
core + transaction status

/api/v1/operations/{operationid}?fetchstatus=true

Complete operation

firefly-core micro service

(receipt + detail) <

1. Submit transaction

<<

2. WebSocket receipt
updates

inimal JSON payload

firefly-evmconnect micro service

firefly-transaction-
manager

firefly-evmconnect FFACPI
implementation

(Complete transaction detail
fetched on-demand from
blockchain connector)

3. FireFly Transaction Managed Policy Engine Changes

HYPERLEDGER

FIREFLY

Smart Contract Interfaces Token Standards

EVM (ABI) Fabric Chaincode ERC 20 ERC 721 ERC 1155 UTXo

Blockchain Connector API

Microservice approach - allows blockchain connectors in any language

Transaction Transaction
Submission Tracking

~

Event Listeners Event Delivery

Connector Toolkit
80% of the code - chain agnostic

Policy Engines

Gas price Transaction Nonce Confirmation Event EVM Based
Monitor Management Manager Streams
Resubmission | Transaction State || Event Checkpoint State UTXO Based

Pluggable policy engine

3. FireFly Transaction Managed Policy Engine Changes - Aims:

e Continue to perform common required tasks outside of policy engine:
o Provide APl endpoints
o Receipt and confirmation tracking
o Event stream management
m Creation/deletion
m Checkpointing

e Allow enough flexibility for policy engines to do:
o More powerful nonce management
o Efficiently dispatch granular status updates directly to consumers
o Control the limits of new transaction buffering
o Manage transactions at signing-key scope
m Per-key buffer/queue
m Sign/submit concurrently for different signing keys

e Continue to provide a simple policy engine in the box

Characteristics of the current model

e Operates on an interval dictated by the
transaction monitor

e Acts on one transaction at a time
o Inhibits concurrent transaction
processing

e Nonces can’t be influenced by the policy engine

e Cannot update transaction state directly

HYPERLEDGER

FIREFLY

Smart Contract Interfaces Token Standards

EVM (ABI) Fabric Chaincode ERC 20 ERC 721 ERC 1155 UTXO

Blockchain Connector API

Microservice approach - allows blockchain connectors in any language

Transaction Transaction
Submission Tracking

Event Listeners Event Delivery

Connector Toolkit
80% of the code - chain agnostic

Policy Engines

Transaction Nonce Confirmation Event EVM Based

Monitor Management Manager Streams

Gas price

Resubmission UTXO Based

| Transaction State | | Event Checkpoint State

@ Configurable interval

PolicyEngine Interface

A

-

const (
UpdateNo UpdateType = iota
UpdateYes
UpdateDelete

)

type PolicyEngine interface {

Execute(ctx context.Context, cAPI ffcapi.API, mtx *apitypes.ManagedTX) (updateType UpdateType, reason ffcapi.ErrorReason, err error)

}

Proposals for a new approach

e Policy engine notified when a transaction
arrives, not on an interval

e Can make decisions based on multiple
transactions

e Engine is responsible for updating transaction
persisted state via toolkit API

o Transaction state no longer read only to
policy engine

o E.g. could set state=SUBMITTING
before calling RPC endpoint,
state=SUBMITTED after

e Can make more complex decisions about how
nonaces are used

o E.g. TXN3 hasn’t been mined, cancel it
and re-use its nonce for TXN4

HYPERLEDGER

FIREFLY

Smart Contract Interfaces

EVM (ABI)

Fabric Chaincode

Token Standards

ERC 20

ERC 721

ERC 1155

uTxo

Blockchain Connector API

Microservice approach - allows blockchain connectors in any language

Transaction
Submission

Transaction
Tracking

€)-

(

Gas price

(Re)Submission

Event Listeners

Event Delivery

80% of the code - chain agnostic

Connector Toolkit

Transaction
Monitor

Event
Streams

Confirmation
Manager

EVM Based

| Transaction State | |

Event Checkpoint State

UTXO Based

Nonce \|

(Re)Assignment e New Txn

e Confirmed Txn
e Cancel Txn

Example PolicyEngine Interface

A

-

type PolicyEngine interface {

Init(toolkit *PolicyEngine.Toolkit)
NewTransaction (mtx *ManagedTx)
CancelTransaction (mtx *ManagedTx)
TransactionConfirmed (mtx *ManagedTx)

type Toolkit interface {

persistence persistence.TxnPersistenceAPI
metrics metrics.MetricsAPI
statusUpdate chan struct{}

Current threading model

Transaction
Transactions from Manager API Route
FireFly core Handler

Policy Loop Policy Engine Chain

N

V

\ A/
Y

Threading model options with proposed changes

Transaction
Transactions from Manager API Route Policy Leep Manager? Policy Engine Chain
FireFly core Handler

V

|, J
W

Possibly do some refactoring as part of the same work

e Rename firefly-transaction-manager?
o firefly-connector-toolkit?

e Move evmconnect FFCAPI implementation into its own repo?

e See FireFly contributor Miro board

API Calls

Ethereum Micro-service

Repor firefly-evmconnect

Connector Toolkit (previously firefly-transaction manage

Repor firefly it? (previously firefly

Responsibilties.

Metric req|

iests

- Defines FFCAPI spec

« API route handing

- Provide policy engine toolkit
+ Basic transaction validation
+ Transaction status queries
> + Event stream handling

Transaction Policy Engine

Repo: firefly-evmconnect (forfirefly policy engine)
cme-evmconnect (for 3rd party policy engines)

- CancelTransaction()

ool e ——

+ TxnPersistence initialisation
+ Metrics endpoint

Calls to chain (e.g.
estimate gas) Connector
Repo: firefly-evm-ffcapi

A4

v

© Transacton sgring (see PreSignad flag)
© Push status change to FFTM

[Gateway ToolKt APT
R
* SiausChange chan
Smple
Interface oo Implementation
+ Noncssoceten I_l_
ol Bl Fed----
- AddTransaction() Gapabiltos | 3rd party impls
* Direct access to Txn persistence’ e e ey
 Nenesrmaioen

Calls to chain (e.g.
submit transaction)

Responsibilities
« Connectivity to blockchain

eth_sendTransaction()
eth_sendRawTransaction()

Signs Txn

Sends to chain

Open Discussion

