
A Lightweight Alternative to
DIDcomm and OpenID 4 VPs?

-
lowering implementation complexity for

existing OIDC relying parties

Scope and Motivation

• DIDcomm is a great protocol, but brings some

implementation complexity for existing (OIDC)

relying parties that utilize JOSE/JWT processing

capabilities for ID token/access token verification

• Relying Parties / Web Services want to enable

resource access for (wallet-) holders based on

verifiable credentials and verifiable presentations

• in scenarios where no persistent connection is

needed (session-based approach)

• out-of-band initiated (QR code), cross device user

interaction

Starting Point: DIDcomm

See https://github.com/bcgov/vc-authn-oidc/blob/main/docs/README.md for a similiar approach

https://github.com/bcgov/vc-authn-oidc/blob/main/docs/README.md

oidc4vp Approach: Verifier-Initiated Cross Device Flow

See https://hackmd.io/@romanr/H1WXfAcQj for detailed messages and their sequence flow chart

https://hackmd.io/@romanr/H1WXfAcQj

Simplified Approach: px-over-http

See https://github.com/windley/IIW_homepage/blob/gh-pages/assets/proceedings/IIW_34_Book_of_Proceedings.pdf
pages 205-206 for detailed messages and their sequence flow chart

https://github.com/windley/IIW_homepage/blob/gh-pages/assets/proceedings/IIW_34_Book_of_Proceedings.pdf

{
"@id": "ba80c9a4-a087-42f3-97df-2612b21ba446", // UUID generated by controller
"@type": "https://didcomm.org/out-of-band/1.0/invitation",
"handshake_protocols": [

"https://example.org/oidc4vp-handshake/0.1" // non-didcomm protocol
],
"services": [

{
"id": "https://client.example.org",
"serviceEndpoint": "https://client.example.org/567545564", // request_uri
"type": "oidc_request_uri" // custom type

}
]

}

Connection Establishment

{
"@id": "90d3878c-e58d-4111-a02c-8409717344f7 ",
"@type": "https://didcomm.org/out-of-band/1.0/invitation",
"handshake_protocols": [

"https://didcomm.org/didexchange/1.0",
"https://example.org/px-over-http-handshake/0.1", // non-didcomm protocol

],
"services": [

{
"id": „#inline",
"id": "https://verifier.org",
"type": "did-communication“,

"px-over-http“,
"serviceEndpoint": "https://verifier.org"

}
]

}

All protocols start off by presenting a (dynamically generated) QR-Code that is scanned with a mobile device.

DIDcomm px-over-http OIDC4VPvs.

https://wallet.verifier.org?
client_id=https%3A%2F%2Fclient.verifier.org%2Fcb
&request_uri=https%3A%2F%2Fclient.verifier.org%2F567545564

Controller derives OOB invitation from auth request to make use of OOB protocol
as single mechanism for connection establishment.
Alternatively, add API endpoint which accepts auth requests

OOB Invitation Message Auth Request

OOB Invitation Message

px-over-http at a glance
• RP creates OOB invitation for px-over-http

• Holder fetches presentation request from serviceEndpoint, providing the invitation_msg_id

• Presentation request contains only 3 parameters:
presentation definition, nonce and session

• Holder creates ID token: JWT_VP + OpenID attributes

• Holder POSTs response (ID token + session param) to serviceEndpoint

Bonus Feature:
To authenticate a previously registered holder, the RP can send an empty presentation definition,
which results in a signed ID token which contains an empty presentation. –> Very fast verification.

Protocol Comparison
advantages Disadvantages

DIDcomm +
Present Proof 2.0

• well-defined base communication protocol
• very flexible, extensible
• solid basis for presentation exchange
• independent of „untrusted“ transport at lower layers
• long lasting (persistent) connections
• privacy preserving via mediators
• async (offline) protocol via mediator

• all communicating partners need DIDs
• implementation complexity applies at all

comm-partners
• existing application-specific protocols need

to be implemented on top of DIDcomm

px-over-http • simplified presentation exchange tailored to the
capabilities of existing RPs:
o single presentation request/single proof
o ID token <-> JWT_VP
o EdDSA (JWT) <-> Ed25519 (LDP_VC)

• less overhead than DIDcomm: uses transport layer
security (HTTPS) instead of encryption envelope

• self-attested claims in ID token and credentials about
the same subject

• simple migration path for existing RPs

• only HTTPs, no persistent connections
• PKI-based transport security (centralized or

federated trust based on CAs and
trustLists)

• only W3C credentials
• only EdDSA

o no selective disclosure
o no predicate proofs

• no multiple proofs in one message
• not privacy preserving via mediator

Protocol Comparison

advantages disadvantages

oidc4vp • stems from a protocol family that is
well defined by the OpenID Foundation
and broadly used over the last decade

• less overhead than DIDcomm: uses
transport layer security (HTTPS) instead
of encryption envelope

• credential format agnostic, very flexible
• self-attested claims in ID token

• only HTTPs, no persistent connections
• PKI-based transport security (centralized or

federated trust based on CAs and trustLists)
• very complex: several communication/

message flows (e.g. on-device vs. cross-
device) with many different variants (e.g.:
deferred objects / uris for request and
presentation_definition)

• not privacy preserving via mediator

References
• DID Specification Registries

Orie Steele; Manu Sporny; Michael Prorock. W3C. 02 November 2021.
W3C Working Group Note. https://www.w3.org/TR/did-spec-registries/

• OpenID Connect Core 1.0

N. Sakimura; J. Bradley; M. Jones; B. de Medeiros; C. Mortimore. The
OpenID Foundation. 8 November 2014. Approved Specification.
https://openid.net/specs/openid-connect-core-1_0.html

• Presentation Exchange v1.0.0

Daniel Buchner; Brent Zundel; Martin Riedel. DIF. Ratified Specification.
https://identity.foundation/presentation-exchange/spec/v1.0.0/

• Self-Issued OpenID Provider v2

K. Yasuda; M.Jones. 28 January 2022. https://openid.net/specs/openid-
connect-self-issued-v2-1_0.html

• Verifiable Credentials Data Model v1.1

Manu Sporny; Grant Noble; Dave Longley; Daniel C. Burnett; Brent
Zundel; Kyle Den Hartog. W3C. 3 March 2022. W3C Recommendation.
https://www.w3.org/TR/vc-data-model/

• Aries RFC 0067: DIDComm DID document conventions

Tobias Looker; Stephen Curran. 10 June 2019. Hyperledger
Foundation. https://github.com/hyperledger/aries-
rfcs/tree/main/features/0067-didcomm-diddoc-conventions

• Aries RFC 0434: Out-of-Band Protocols

Ryan West; Daniel Bluhm; Matthew Hailstone; Stephen
Curran; Sam Curren; George Aristy. 1 March 2020.
Hyperledger Foundation.
https://github.com/hyperledger/aries-
rfcs/tree/2da7fc4ee043effa3a9960150e7ba8c9a4628b68/feat
ures/0434-outofband

• Aries RFC 0454: Present Proof Protocol 2.0

Nikita Khateev; Stephen Curran. 27 May 2020. Hyperledger
Foundation. https://github.com/hyperledger/aries-
rfcs/tree/eace815c3e8598d4a8dd7881d8c731fdb2bcc0aa/fea
tures/0454-present-proof-v2

• Decentralized Identifiers (DIDs) v1.0

Manu Sporny; Amy Guy; Markus Sabadello; Drummond Reed.
W3C. 3 August 2021. W3C Proposed Recommendation.
https://www.w3.org/TR/did-core/

Thanks for your attention and
feedback!

