
Auto-Generating Language-Specific
Wrappers for Rust Libraries

Steve McCown
smccown@anonyome.com

4 Nov 2021

Common Libraries with Language Wrappers

Common Library (e.g., Rust)

Swift Python Java C/C++

Swift
App

Python
App

Java
App

C/C++
App

Wrapper Layer
• Relay function calls
• Convert parameters
• Memory management
• ‘UnsafeMutablePointer’

Wrappers Require Unsafe C-Style Coding

Requires all of this

Just to do this

UniFFI by Mozilla

• Automatically generates foreign-
language bindings for Rust libraries
• Consolidates business logic into a

portable library
• Builds wrappers for
• Kotlin
• Swift
• Python
• C++

• https://github.com/mozilla/UniFFI-rs

https://github.com/mozilla/uniffi-rs

Basic Wrapper Tutorials

Tutorials
• Quick FFI Intro
• Wrapper Intro (simple UniFFI)
• Wrapper Data Types

(the main types supported by UniFFI)

Source:
https://github.com/sudoplatform-labs/ffi-tutorials

https://github.com/sudoplatform-labs/ffi-tutorials

UniFFI: How it works

1. Write custom Rust library
• Make API functions public
• Build crate as linkable library

2. Write a UDL representation of API functions
• Similar to Interface Definition Language (IDL)

3. Generate a “Scaffolding” layer
• FFI code that creates c-style calls, memory conversions, etc.

4. Generate language-specific implementation layer
• Native code layer to cover up complicated FFI calls (e.g., Swift FFI feels like native Swift)

5. Import generated code & library into native application

Create Rust Library

Cargo.toml

lib.rs

Snake
Case

(NOTE: the didcomm_rs library currently uses UniFFI version 0.14.0)

UniFFI additions

Create UDL for API Functions

library.UniFFI.udl

Functions, structures, errors,
enums, etc. are defined in

an independent format

Generate Scaffolding Layer

(for more details, see: library.UniFFI.UniFFI.rs)

Run this

To generate this

Generate a Swift Interface

Run this

Generate
library.swift

Camel Case

MacOS Swift App

Add

Add

Add

Call the library
function

Run this

Generate Python Interface

Generate
library.py

Python Test App

Add

Call the library
function

UniFFI Applied to DIDComm_rs

UDL for didcomm_rs

Note: [Self=ByArc] is used since didcomm_rs required an Arc<T> for the self parameter (object is on the heap).

UniFFI specifies how Rust objects (that
may contain multiple public members &
methods) are presented to calling
applications.

Note: from a UniFFI perspective a
referenced object can only be presented
as either:

1. Object (interface):
• Contains methods
• Passed by reference

or
2. Dictionary:

• Contains data elements
• Passed by value

In UniFFI, an object cannot be presented
as both an object and a dictionary.

didcomm_rs:
message.rs

Added: Using getters & setters allows
access to data elements by objects
without needing direct access. This
allows the didcomm Message object to
be specified by UniFFI as an object
interface while still allowing calling
applications to access and modify the
object member variables.

Scaffolding layer is auto-generated as:
didcomm-rs.UniFFI.UniFFI.rs

Language wrapper is auto-generated as:
didcomm-rs.swift

Once the UniFFI generation is
performed, the didcomm_rs test
routines are easily called from Swift.

Source: https://github.com/anonyome/didcomm-rs

https://github.com/anonyome/didcomm-rs

Limitations (temporary?)

libindy: blob_storage.rs

Core method

With Future

Added: Method
Without Future

Return
Result object

Note: UniFFI does not (currently?) support the Rust Future designator, so a companion function, u_open_reader(), was created without
the Future designator and this method was specified in the .udl file.

libindy: anoncreds.rs

Return a
dictionary

Returns a tuple

Note: UniFFI does not currently support the return of custom tuples. To
compensate, a custom dictionary type (containing the tuple members)
was created and added to pub fn issuer_create_schema(). This allows the
data to be returned and accessed by the calling application.

Questions?

