August, 2019

> Introduction

> Name: Harsh Jain

> Location: India

> University: Indian Institute Of Technology, Roorkee

> Mentor(s): Mahavir Jhawar, Deva Madala

> Hyperledger project: Fabric, blockchain-explorer, caliper

> Project Description: Secure Communication over Internet

Insecure Channel

> Project Description: Secure Communication over Internet

 (pk_A) $(\mathsf{pk}_A, \mathsf{sk}_A)$

Insecure Channel

$$msg = m$$

$$\mathsf{Enc}_{\mathsf{pk}_A}(m) = C \longrightarrow$$

$$\mathsf{Dec}_{\mathsf{sk}_A}(C) = m$$

Assumption: $Amazon's \ public \ key \ is \ pk_A$

> Project Description: Secure Communication over Internet

Assumption: We must trust CA's

Assumption: We must trust CA's

Blockchain ensures CA accountability

Project Objectives:

- > Development of client application for Certificate Authority organisation
- > Setting up the CTB over cloud.
- > Browser extension for client side validation of certificates.
- > Benchmarking CTB-assisted SSL/TLS handshake duration

- Project Deliverables: Demo
 - CTB has CAs and browsers as its peers

- > CAs can submit certificates (that they issue to different domain owners) to CTB
- > Browsers can query certificates (that they receive from domain owners over https connections) to CTB

- Project Deliverables: Demo
 - > CTB has CAs and browsers as its peers

- > CAs can submit certificates (that they issue to different domain owners) to CTB
- > Browsers can query certificates (that they receive from domain owners over https connections) to CTB
- > Demo 1
 - > CA submitting the certificate to CTB
 - Exhibit Client-server connection = firefox connecting to ctb-testing.ml

- Project Deliverables: Demo
 - > CTB has CAs and browsers as its peers

- > CAs can submit certificates (that they issue to different domain owners) to CTB
- > Browsers can query certificates (that they receive from domain owners over https connections) to CTB
- > Demo 2
 - > Another CA issuing certificate for ctb-testing.ml and show that it will not be allowed
 - > Pick another domain: google.com for which the certificate is not available at CTB
 - > Exhibit the firefox failing to connect to google.com

Implementation details of chaincode are available Paper

Project Deliverables:

- > Implementing CA REST server
- > Firefox extension for certificate verification
- > Deployment of CTBhf to digitalocean
- > Documentation of every step involved
- > Testing fabric@I.4 for TPS and how to scaling it for multiple CAs
- > Code and all the configuring are available @https://github.com/harsh-98/ctb

Architecture of CTBhf network:

Testing:

We have tested our fabric network spread over two servers, running in docker environment. Fabric@1.4 is used.

Caliper was used for testing two types of transactions:

Pushcerts: addition of certificates to fabric

Query: Getting certificate for a particular domain

Test	Name	Succ	Fail	Send Rate	Max Latency	Min Latency	Avg Latency	Throughput
1	pushcerts	100	0	99.4 tps	3.01 s	1.60 s	2.20 s	33.3 tps
2	query	5000	0	161.7 tps	113.22 s	40.10 s	85.18 s	43.4 tps

Test	Name	Succ	Fail	Send Rate	Max Latency	Min Latency	Avg Latency	Throughput
1	query	4576	5424	169.0 tps	197.97 s	80.49 s	158.50 s	17.7 tps

We have gone through some of the papers on scaling hyperledger upto 20000 TPS.. LINK

This requires new features which are planned to be implemented in fabric@2.0.

Project Execution & Accomplishments:

- > List of completed tasks are available on hyerpledger wiki.
- > Adding a new org to live CTB^{hf} network and modifying certificate for IP SANs
- > Testing the network required working and maintaining multiple machines.
- > I have been active on chat.hyperledger.org, mainly caliper, fabric and fabric-kubernetes channels.
- > Jira platform has been very useful. I usually got a response on the issue within 2-3 hrs. Link Link

> Recommendations for future work:

- > Currently, we are working on revocation part of certificate in more detail. Going through CRL, OCSP and OCSP stapling.
- > Chrome extension: currently chrome is missing API through which extension can get SSL data. Once it is available, we plan to build chrome extension too.
- > We plan to test our configuring on more servers with different number of CA orgs.

THANK YOU

Any questions?

You can find me at: @harsh-98 harshjniitr@gmail.com

