
Hyperledger Iroha Workshop
Hyperledger Bootcamp
Hong Kong, March 7, 2019

Vadim Reutskiy

1

2

Agenda

1. Few words about Soramitsu
2. Overall description of Iroha
3. Possible use cases
4. Workshop case description

Vadim Reutskiy

⬤ Project lead in Japanese office
⬤ Email: reutskiy@soramitsu.co.jp
⬤ Telegram: @vreutskiy

Contacts

3

mailto:reutskiy@soramitsu.co.jp

About Soramitsu

• Fintech software
development company

• Founded in 2016 in Tokyo,
Japan

• 55+ employees

*In progress

4

• Worldwide locations:
• Tokyo (Japan) 🇯🇵
• Innopolis (Russia) 🇷🇺
• Phnom Penh (Cambodia)
🇰🇭

• Astana (Kazakhstan) 🇰🇿
• Zug (Switzerland)🇨🇭*

Who are we?

We are a proud member of the
Japan Blockchain Association

We are creating a payment system based on
Hyperledger Iroha for the central bank and
regulator of the Kingdom of Cambodia

Creator of Hyperledger Iroha and an active member
of the Linux Foundation’s Hyperledger Project

5

Key features of Iroha

• Command-driven
architecture

• Asset management
• Identity management

• Support of linux, macOS,
Windows environment

• Byzantine fault-tolerant
ordering service and
consensus

• Role-based access control

6

• Client libraries, including
example apps for iOS, JS
(Vue.JS), Android (Java 8)

• Universal peer role and easy
scripted deployment with
Docker and Ansible

• Multi-signature transactions

Why Iroha?

• Distributed ledger platform for simple use-cases of
payments and identity storage.

• Uses fixed set of commands 16 in total (e.g. asset creation,
transfers, account creation) and 11 queries (e.g. get account
detail, get account balance) in its client API layer.

• Has modular design of its core components: storage,
consensus, etc. which allows fundamental changes and
opens up possibilities for contribution.

7

Why Iroha?

8

• Unique consensus and ordering service algorithms
compared to other platforms with BFT class reliability.

• Has modern C++ design which lowers maintenance efforts
and increases simplicity of use for API consumers (designers
of blockchain-powered applications).

• Successful proof of concept projects include: cross-chain
exchange, bank settlements, asset tokenization in the
blockchain, digital identity, and supply chain scenarios.

Comparison of DLT

9

Factor per
platform

Hyperledger Fabric
(and IBM blockchain)

Hyperledger Iroha Hyperledger
Sawtooth

Regional
awareness

China! and the rest of the
world

Asia, especially Japan USA

Differentiators Extendable deployment
architecture, «channels»

Universal peer role,
SQL state, linearly

scalable consensus

Transaction
processors, pluggable

components

Is this a
blockchain?

Yes (although it stores invalid
transactions)

Yes Yes

API gRPC & REST gRPC gRPC

Business logic
layer

Smart contracts
in Go, Java & Solidity

Commands and
queries

Transaction families
and processors

Contributing
companies

IBM Soramitsu Intel

BFT — + +?

In production? + +- +?

Comparison of DLT

10

Factor per
platform

Corda Hyperledger Iroha Ethereum

Regional
awareness

UK, India, USA Asia, especially Japan The world

Differentiators Scalability Universal peer role,
SQL state, linearly

scalable consensus

Turing-complete smart
contacts, same codebase

for public and private

Is this a
blockchain?

No Yes Yes

API JSON-RPC? gRPC JSON-RPC

Business logic
layer

Transactions processors
in Kotlin?

Commands and
queries

Solidity smart contracts

Contributing
companies

R3 Soramitsu Ethereum foundation

BFT — + —

In production? + +- +?

Iroha Architecture

11

Data Structures in the Iroha

● Every user (or entity) has it’s own account: {account_name}@{domain}
● Every account can have several types of assets on board: {asset_name}#{domain}
● Every account has list of Roles with corresponding Permissions
● Every account can have more than one Signatories to perform multi-signature

transactions

12

Commands & Queries in Hyperledger Iroha

Without writing code, asset, identity & supply chain management can be done
using prepared commands in the data model .
This eases development and increases reliability.

Domain

AccountMulti assets

Signatures

Role

Assets

Assets

Permissions
Peer

13

Commands in Hyperledger Iroha

Domains
CreateDomain Account

CreateAccount
AddSignatory
RemoveSignatory
SetAccountQuorum
SetAccountDetail

Assets
CreateAsset
AddAssetQuantity
SubtractAssetQuantity
TransferAsset

Permissions
CreateRole
AppendRole
DetachRole
GrantPermission
RevokePermission

Peer
AddPeer

Domain

AccountMulti assets

Signatures

Role

Assets

Assets

Permissions
Peer

14

Queries in Hyperledger Iroha

Assets
GetAssetInfo

Transactions
GetTransactions
GetAccountTransactions
GetAccountAssetTransactions
GetPendingTransactions

Permissions
GetRoles
GetRolePermissions

Account
GetAccount
GetAccountAssets
GetAccountDetail
GetSignatories

Domain

AccountMulti assets

Signatures

Role

Assets

Assets

Permissions
Peer

15

Use Case I: Digital Currency

The main use case for the blockchain based system.

● Account corresponds to the physical user of the system
● Asset corresponds to single digital currency
● Domain corresponds to particular Bank or Institution
● Quorum for every account have value 1

16

Use Case II: Verifiable Claims

Provides trusted distributed source of truth for document verification

● Account corresponds to the particular document
● Account details contains verification information
● Domain corresponds to the particular institution

17

Use Case III: Decentralized Depository

● Distributed network of trusted digital currency exchange
● Account corresponds to the registered user
● Account details keeps important information about linked external

currencies and logic of synchronization
● Quorum is variable and corresponds to amount of nodes inside the

system

18

System architecture for Workshop Example

19

During the workshop we will create a simple web service,
which can be used as middleware between the client
application and Ioha Network, as we always do in the real
projects.

You can use any client library and any approach, which you
prefer, but for simplicity and synchronization I recommend to
use prepared wireframe for the Web Service on Kotlin, which
uses Iroha Java Client Library.

Workshop steps recommended order

20

1. Start the Iroha node locally and perform several operations
over it using CLI (by following "Getting Started" document).

2. Get familiar with the Client Java Library
3. Obtain the wireframe example web server
4. Implement needed functions by example from the Client

Java Library
5. Check that everything works correctly using Postman tool

Thank you for attention!
Now I am open for
questions

21

What we propose

Learn Latest Trends in Fintech Industry
• What is permissoned Blockchain and how to use it

• Learn on real cases but in a safe environment
Open source contribution
• A contribution in known project
• Create web/mobile product based on Blockchain

22
22

Project constraints

• Back: Any language thats supports Protobuf
• Front: VueJS, React
• Mobile: Native language
• Github / open source

23
23

Decentralized permission model

• Decentralized RBAC*

permission model
without single point
failure

• Separation of three
powers can be
created to avoid
concentration of
authority

• Roles and
permissions are set
determined in the
genesis block

＊RBAC=Role Base Access Control

Judicial Executive

Legislative

Role
Administrator

Administrator
Auditor

Asset Creator
Asset Sender

Assign
Role

Assign
Role

Grant permission of
account recovery

Example of Role
Decentralization

24

Comparison of DLT Platforms

Hyperledger
Fabric

Turing
complete
smart
contracts

Supports
privacy via
“channels”

Supported by
IBM

Hyperledger
Iroha

Pre-defined
smart contracts
called
“commands”

Supports
privacy via
permissions

SDKs for mobile
apps

Supported by
Soramitsu

Corda

Supports
payments and
notarization of
messages (but
through
centralized
service)

Supports
privacy via
UTXO

Supported by
R3

Ethereum

Turing complete
smart contracts

Private version
has been tested
by many banks
around the
world

Supported by
the Ethereum
open source
community

25

6

Shared distributed ledger
• Make a shared distributed ledger with some client information
• Each company only shares part of data to ensure that product is
unique

Proposed technical solution

26

