
Intermission
We will return shortly!

https://bit.ly/3rFNDfA

Intro to Hyperledger Aries
Daniel Bluhm
Char Howland

Daniel Bluhm

Indicio Software Engineer

 daniel@indicio.tech

 @dbluhm

Co-chair of DIF Interoperability Working Group

© Indicio PBC 2022

© Indicio PBC 2022

Char Howland

Indicio Software Engineer

 char@indicio.tech

 @cjhowland

Co-chair of Hyperledger Identity Implementers Working Group

Co-chair of Hyperledger Indy Contributors Working Group

© Indicio PBC 2022

Agenda
1. Agents

2. Aries Cloud Agent Python and Aries Toolbox

3. Protocols and messaging

4. Starting up the agents and toolbox

5. Creating a connection

6. Issuing a credential

7. Verifying a credential

Handout
https://bit.ly/3rFNDfA

1. Agents

© Indicio PBC 2022

© Indicio PBC 2022

● Acts on behalf of a single identity owner

● Holds and uses cryptographic keys to securely perform its
responsibilities

● Interacts with other agents through DID Communication
Protocols

Identity Agents
Definition

© Indicio PBC 2022

Identity Agents
Categorization, definitions

● Cloud Agent - An agent in the “cloud.” Does not imply trust or
lack of trust, a particular transport, ownership, etc

● Edge Agent - An agent located at the “edge”

● Some other examples - Mobile, Workstation, Server,
Embedded, Browser, Blockchain (embodied in smart contract),
Mesh (IoT, etc.), Paper?

© Indicio PBC 2022

Identity Agents
Gradient of complexity

© Indicio PBC 2022

● No hard and fast definition of an agent or a category of
an agent

● These categories serve to help succinctly describe
interoperability goals

Identity Agents
Categorization, definitions

2. Aries Cloud Agent Python
and Aries Toolbox

© Indicio PBC 2022

© Indicio PBC 2022

Aries Cloud Agent - Python (ACA-Py)
A foundation for building decentralized identity applications and services
running in non-mobile environments

Aries Toolbox
A tool for interacting with Aries Agents

Open-source building blocks for your own custom
software to issue, hold, and verify credentials

© Indicio PBC 2022

Aries Cloud Agent - Python (ACA-Py)
A foundation for building decentralized identity applications and services
running in non-mobile environments

● Server; not intended for use on mobile or browser

● Designed for horizontal scalability

● Can act as Issuer, Verifier, and Holder of:
○ AnonCreds

○ W3C Credentials in JSON-LD Format using ED25519 or BBS Signatures

● Revocation of AnonCreds Credentials

● Multi-tenancy

© Indicio PBC 2022

Aries Toolbox
A tool for interacting with Aries Agents

Development and Testing Tool

● Not intended as an end-user product

● But still an effective tool for training, debugging, and testing

Building blocks

● Electron

● Vue.JS

● ElementUI

© Indicio PBC 2022

Aries Toolbox
A tool for interacting with Aries Agents

● Implemented as a minimal (thick) agent

● Protocol implementations encapsulated in their own components

● Feature detection protocol to show matching UI components

● Direct protocols

● Indirect protocols (puppet stringing)

© Indicio PBC 2022

High Level Agent Architecture

© Indicio PBC 2022

High Level Agent Architecture

© Indicio PBC 2022

ACA-Py Architecture

© Indicio PBC 2022

ACA-Py Architecture

● Controller: application business logic
○ Receives events from agent

○ Sends requests to agent using HTTP JSON administrative API

© Indicio PBC 2022

ACA-Py Architecture

● Agent responsibilities:
○ Secret storage and management

○ Connecting to other agents

○ Interacting with distributed ledgers

© Indicio PBC 2022

ACA-Py Plugins
Extending your Agent

ACA-Py has an increasingly mature plugin system for adding:

● Protocol Implementations

● Admin API Endpoints

● Custom event handlers

● DID Resolvers

● Message Queuing Systems

© Indicio PBC 2022

ACA-Py Plugin for Aries Toolbox
Enabling ACA-Py to work with the Toolbox

● Indirect Protocol Implementation

● Allows for operating Aries Cloud Agent-Python
through the toolbox

© Indicio PBC 2022

ACA-Py Plugin for Aries Toolbox
Enabling ACA-Py to work with the Toolbox

© Indicio PBC 2022

Aries Toolbox 2.0 in the works

● Built on top of actively maintained Agent Framework (AFJ)

● Will be built using React

● Will resemble its relatives in the Aries umbrella

● More maintainable path forward for DIDComm v2

© Indicio PBC 2022

Other Aries Codebases
● Agents and Frameworks

○ Aries Framework JavaScript (AFJ)

○ Aries Bifold

○ Aries Framework Go (AFGO)

○ Aries Framework .Net

● Aries Agent Test Harness

● Other Agents and Services
○ Static Agent Python

○ Aries Mediator Service

○ Aries Askar

© Indicio PBC 2022

Aries RFCs

RFCs (Request for Comments) are the
source of much of the content of this
workshop

https://github.com/hyperledger/aries-rfcs

https://github.com/hyperledger/aries-rfcs

3. Protocols and Messaging

© Indicio PBC 2022

© Indicio PBC 2022

What is DID Communication?

Secure, private peer-to-peer messaging

Verifiable Credentials
are about the subject

DIDComm is communication
with the subject

© Indicio PBC 2022

Why DIDComm?

● The way for DID and VC-capable entities to communicate

securely and privately

○ Used for credentials and presentations

○ Not limited to verifiable credentials

■ Instant messaging

■ Relationship-based user authentication (login)

■ Buying and selling

© Indicio PBC 2022

Properties of DIDComm

Secure Private

Interoperable Transport-agnostic Extensible

© Indicio PBC 2022

Additional properties of DIDComm

Message-oriented Asynchronous Routable

© Indicio PBC 2022

DIDComm
Interactions Between Transports, Security, and Interoperability

● Security of DIDComm is not dependent on a given transport

● Transports and routing can augment security and usability
○ Using HTTPS, many current agent implementations benefit from Perfect

Forward Secrecy

■ PFS is a long-term goal of native DIDComm

● Requiring specific transports can damage interoperability
○ Take advantage of technologies through protocols

© Indicio PBC 2022

DIDComm Layers

Transport (any transport)

DIDs (especially Peer DIDs)

DID Communication Protocols

© Indicio PBC 2022

DIDComm Protocols
Definition

● “A recipe for a stateful interaction.” (Daniel Hardman)

● Many of the layers underpinning DID Communication have their own
protocols
○ TCP, HTTP, managing DIDs, Diffie-Hellman, etc.

● DID Communication Protocols build on top of the lower layers
to define protocols with real world social value:
○ Forming connections, requesting and issuing credentials, proving things,

buying and selling, etc.

© Indicio PBC 2022

REST
● Representational State Transfer
● Client and Server
● One request, one response

● Uses HTTP POST, GET, HEAD, DELETE,
etc.

● Uses paths such as
/users/{user_id}/messages

● Paths routed to handlers

DIDComm
● Message-based stateful interactions
● Participants are peers with roles defined by protocol
● Many messages may be exchanged to complete an

interaction
● Transport agnostic; action determined by message

type
● Uses message types such as

https://didcomm.org/my-proto/1.0/my-type
● Message types routed to handlers

DIDComm Protocols
Comparison to REST

© Indicio PBC 2022

DIDComm Protocols
Components of a Protocol

● Name and Version

● Unique URI

● Message type name

● Roles

● State and sequencing rules

● Events

● Constraints that provide trust and incentives

© Indicio PBC 2022

DIDComm Protocols: Basic Message
Components of a Protocol

● Name and Version: basicmessage, 1.0

● Unique URI: https://didcomm.org/basicmessage/1.0

● Message type name: Exactly one with name “message”:
https://didcomm.org/basicmessage/1.0/message

● Roles: Sender, Receiver

● State and sequencing rules: No real state changes

● Events: Send or receive

● Constraints that provide trust and incentives: None

© Indicio PBC 2022

{
"@id": "123456780",
"@type": "https://didcomm.org/basicmessage/1.0/message",
"~l10n": { "locale": "en" },
"sent_time": "2022-01-15 18:42:01Z",
"content": "Your hovercraft is full of eels."

}

See RFC 0095: BasicMessage for protocol details

Example Agent Message
Message types

https://github.com/hyperledger/aries-rfcs/blob/master/features/0095-basic-message/README.md

© Indicio PBC 2022

{
"@id": "123456780",
"@type": "https://didcomm.org/basicmessage/1.0/message",
"~l10n": { "locale": "en" },
"sent_time": "2022-01-15 18:42:01Z",
"content": "Your hovercraft is full of eels."

}

See RFC 0095: BasicMessage for protocol details

Example Agent Message
Message types

https://github.com/hyperledger/aries-rfcs/blob/master/features/0095-basic-message/README.md

© Indicio PBC 2022

{
"@id": "123456780",
"@type": "https://didcomm.org/basicmessage/1.0/message",
"~l10n": { "locale": "en" },
"sent_time": "2022-01-15 18:42:01Z",
"content": "Your hovercraft is full of eels."

}

See RFC 0095: BasicMessage for protocol details

Example Agent Message
Message types

Document URI

https://github.com/hyperledger/aries-rfcs/blob/master/features/0095-basic-message/README.md

© Indicio PBC 2022

{
"@id": "123456780",
"@type": "https://didcomm.org/basicmessage/1.0/message",
"~l10n": { "locale": "en" },
"sent_time": "2022-01-15 18:42:01Z",
"content": "Your hovercraft is full of eels."

}

See RFC 0095: BasicMessage for protocol details

Example Agent Message
Message types

Protocol name

https://github.com/hyperledger/aries-rfcs/blob/master/features/0095-basic-message/README.md

© Indicio PBC 2022

{
"@id": "123456780",
"@type": "https://didcomm.org/basicmessage/1.0/message",
"~l10n": { "locale": "en" },
"sent_time": "2022-01-15 18:42:01Z",
"content": "Your hovercraft is full of eels."

}

See RFC 0095: BasicMessage for protocol details

Example Agent Message
Message types

Protocol version

https://github.com/hyperledger/aries-rfcs/blob/master/features/0095-basic-message/README.md

© Indicio PBC 2022

{
"@id": "123456780",
"@type": "https://didcomm.org/basicmessage/1.0/message",
"~l10n": { "locale": "en" },
"sent_time": "2022-01-15 18:42:01Z",
"content": "Your hovercraft is full of eels."

}

See RFC 0095: BasicMessage for protocol details

Example Agent Message
Message types

Message type name

https://github.com/hyperledger/aries-rfcs/blob/master/features/0095-basic-message/README.md

© Indicio PBC 2022

{
"@id": "123456780",
"@type": "https://didcomm.org/basicmessage/1.0/message",
"~l10n": { "locale": "en" },
"sent_time": "2022-01-15 18:42:01Z",
"content": "Your hovercraft is full of eels."

}

See RFC 0095: BasicMessage for protocol details

Example Agent Message
Message types

Protocol identifier URI

https://github.com/hyperledger/aries-rfcs/blob/master/features/0095-basic-message/README.md

© Indicio PBC 2022

{
"@id": "123456780",
"@type": "https://didcomm.org/basicmessage/1.0/message",
"~l10n": { "locale": "en" },
"sent_time": "2022-01-15 18:42:01Z",
"content": "Your hovercraft is full of eels."

}

See RFC 0095: BasicMessage for protocol details

Example Agent Message
Message types

Message type URI

https://github.com/hyperledger/aries-rfcs/blob/master/features/0095-basic-message/README.md

© Indicio PBC 2022

{
"@id": "123456780",
"@type": "https://didcomm.org/basicmessage/1.0/message",
"~l10n": { "locale": "en" },
"sent_time": "2022-01-15 18:42:01Z",
"content": "Your hovercraft is full of eels."

}

See RFC 0095: BasicMessage for protocol details

Example Agent Message
Message types

https://github.com/hyperledger/aries-rfcs/blob/master/features/0095-basic-message/README.md

© Indicio PBC 2022

{
 "@type": "https://didcomm.org/issue-credential/1.0/offer-credential",
 "@id": "<uuid-of-offer-message>",
 "comment": "some comment",
 "credential_preview": <json-ld object>,
 "offers~attach": [
 {
 "@id": "libindy-cred-offer-0",
 "mime-type": "application/json",
 "data": {
 "base64": "<bytes for base64>"
 }
 }
]
}

A More Complex Example
Message types

© Indicio PBC 2022

There are two layers of messages that combine to
enable interoperable DID Communication
● Agent Messages (typically what is meant when “message” is

used)

● Encryption Envelope or “Packed Message”

DIDComm Message Layers

© Indicio PBC 2022

Agent Messages

● Establishing connections between identities

● Issuing and presenting verifiable credentials

● Instant messages

Messages sent between identities to accomplish some shared goal

© Indicio PBC 2022

Packed Messages
A wrapper around an agent message enabling messages to be securely
sealed while in transport from one agent to the other

● Authenticated or anonymous encryption

● End-to-end encrypted

● Derivative of JSON Web Encryption specification

© Indicio PBC 2022

Example Agent Message

See RFC 0095: BasicMessage for protocol details

{
"@id": "123456780",
"@type": "https://didcomm.org/basicmessage/1.0/message",
"~l10n": { "locale": "en" },
"sent_time": "2022-01-15 18:42:01Z",
"content": "Your hovercraft is full of eels."

}

https://github.com/hyperledger/aries-rfcs/blob/master/features/0095-basic-message/README.md

© Indicio PBC 2022

pack(msg, their_vk, my_sk)

{
"@id": "123456780",
"@type": "https://didcomm.org/basicmessage/1.0/message",
"~l10n": { "locale": "en" },
"sent_time": "2022-01-15 18:42:01Z",
"content": "Your hovercraft is full of eels."

}

Example Agent Message

© Indicio PBC 2022

pack(msg, their_vk, my_sk)

{
"@id": "123456780",
"@type": "https://didcomm.org/basicmessage/1.0/message",
"~l10n": { "locale": "en" },
"sent_time": "2022-01-15 18:42:01Z",
"content": "Your hovercraft is full of eels."

}

Example Agent Message

vk: verification key (verkey), Ed25519 Public Key

sk: signing key (sigkey), Ed25519 Private Key

© Indicio PBC 2022

Example Packed Message

{
 "protected": "eyJlbmMiOiJ4Y2hhY2hhMjBwb2x5MTMwNV9pZ...",
 "iv": "ZqOrBZiA-RdFMhy2",
 "ciphertext": "K7KxkeYGtQpbi-gNuLObS8w724mIDP7IyGV_a...",
 "tag": "kAuPl8mwb0FFVyip1omEhQ=="
}

For a detailed description of each field, see RFC 0019 Encryption Envelope.

https://github.com/hyperledger/aries-rfcs/blob/master/features/0019-encryption-envelope/README.md

© Indicio PBC 2022

Example Packed Message

For a detailed description of each field, see RFC 0019 Encryption Envelope.

{
 "protected": "<base64 encoded headers>",
 "iv": "<initial vector>",
 "ciphertext": "<encrypted basicmessage/1.0/message>",
 "tag": "<hmaced headers>"
}

https://github.com/hyperledger/aries-rfcs/blob/master/features/0019-encryption-envelope/README.md

© Indicio PBC 2022

DIDComm v2

● Ratified, rapid adoption

● Most protocols work in both v1 and v2 contexts

● Significant differences

○ Message structure split between 'headers' and body

○ Special Handling of Peer DIDs eliminated

○ DID Exchange not needed

© Indicio PBC 2022

{
 "type": "https://didcomm.org/trust-ping/2.0/ping",
 "id": "518be002-de8e-456e-b3d5-8fe472477a86",
 "from": "did:example:123456",
 "body": {
 "response_requested": true
 }

}

DIDComm v1
trust ping:

{

 "@type": "https://didcomm.org/trust_ping/1.0/ping",
 "@id": "518be002-de8e-456e-b3d5-8fe472477a86",
 "response_requested": true
}

DIDComm v2
trust ping:

Intermission
We will return shortly!

https://bit.ly/3rFNDfA

4. Starting up the agents
and toolbox

© Indicio PBC 2022

Demo
Starting up the agents and

toolbox

© Indicio PBC 2022

Starting up the Aries Toolbox

In one terminal, run the following:

cd ~/git-hltraining/aries-toolbox

git pull

npm install

npm run dev

© Indicio PBC 2022

Starting up the Aries Agents
From another terminal, run the following:

cd ~/git-hltraining/aries-acapy-plugin-toolbox/demo

git pull

git checkout hl-workshop

docker-compose -f docker-compose.alice-bob.yml up --build

Permissions
When running docker-compose (or other docker commands), you may need to prefix the command
with `sudo` if it initially fails due to permissions. The above command would then look like:

sudo docker-compose -f docker-compose.alice-bob.yml up --build

© Indicio PBC 2022

Connecting the Agents to the Toolbox
Copy Alice’s Invitation URL into the toolbox New Agent Connection bar.

© Indicio PBC 2022

Connecting the Agents to the Toolbox
Copy Alice’s Invitation URL into the toolbox New Agent Connection bar… and click connect.

© Indicio PBC 2022

Connecting the Agents to the Toolbox
Alice is connected to the toolbox.

© Indicio PBC 2022

Connecting the Agents to the Toolbox
Copy Bob’s Invitation URL into the toolbox New Agent Connection bar.

© Indicio PBC 2022

Connecting the Agents to the Toolbox
Copy Bob’s Invitation URL into the toolbox New Agent Connection bar… click to connect.

© Indicio PBC 2022

Connecting the Agents to the Toolbox
Bob is connected to the toolbox.

5. Creating a Connection

© Indicio PBC 2022

© Indicio PBC 2022

Alice Bob

© Indicio PBC 2022

Alice’s Domain Bob’s Domain

Edge
Agent

Edge
Agent

Mediator
Agent

Mediator
Agent

© Indicio PBC 2022

Alice Bob

© Indicio PBC 2022

Invitation
Alice Bob

© Indicio PBC 2022

● Initial Connection Key
● Endpoint Info
● Routing Keys
● Label

Invitation

Alice Bob

© Indicio PBC 2022

See Connection Protocol, Section 0.

{
 "@type": "https://didcomm.org/connections/1.0/invitation",
 "@id": "12345678900987654321",
 "label": "Alice",
 "recipientKeys": ["8HH5gYEeNc3z7PYXmd54d4x6qAfCNrqQqEB3nS7Zfu7K"],
 "serviceEndpoint": "https://example.com/endpoint",
 "routingKeys": ["8HH5gYEeNc3z7PYXmd54d4x6qAfCNrqQqEB3nS7Zfu7K"]
}

Invitation

https://github.com/hyperledger/aries-rfcs/blob/master/features/0160-connection-protocol/README.md#0-invitation-to-connect

© Indicio PBC 2022

Alice’s Domain Bob’s Domain

● Label
● Bob’s DID
● Bob’s DIDDoc

○ Relationship Keys
○ Routing Keys
○ Service Endpoints

Request

Alice Bob

© Indicio PBC 2022

{
 "@id": "5678876542345",
 "@type": "https://didcomm.org/connections/1.0/request",
 "label": "Bob",
 "connection": {
 "did": "B.did@B:A",
 "did_doc": {
 "@context": "https://w3id.org/did/v1"
 // DID Doc contents here.
 }
 }
}

See Connection Protocol, Section 1.

Request

https://github.com/hyperledger/aries-rfcs/blob/master/features/0160-connection-protocol/README.md#1-connection-request

© Indicio PBC 2022

Alice’s Domain Bob’s Domain

● Alice’s DID
● Alice’s DIDDoc

○ Relationship Keys
○ Routing Keys
○ Service Endpoints

Response

Alice
Bob

© Indicio PBC 2022

{
 "@type": "https://didcomm.org/connections/1.0/response",
 "@id": "12345678900987654321",
 "~thread": {
 "thid": "<@id of request message>"
 },
 "connection": {
 "did": "A.did@B:A",
 "did_doc": {
 "@context": "https://w3id.org/did/v1"
 // DID Doc contents here.
 }
 }
}

See Connection Protocol, Section 2.

Response

https://github.com/hyperledger/aries-rfcs/blob/master/features/0160-connection-protocol/README.md#2-connection-response

© Indicio PBC 2022

Alice Bob
Connection
Established

© Indicio PBC 2022

DIDComm
Forming Connections

● Peer-to-peer connections

● Not necessarily direct

● Connection is not a transport layer connection (socket, open http
request, TCP, UDP, etc.)

● A connection is considered completed when both parties have
securely exchanged DID Documents (DIDs, keys, and service
endpoints) for future communication

Demo
Creating a connection

© Indicio PBC 2022

Demo: Creating a Connection

© Indicio PBC 2022

Demo: Creating a Connection

© Indicio PBC 2022

Demo: Creating a Connection

© Indicio PBC 2022

Demo: Creating a Connection

© Indicio PBC 2022

Demo: Creating a Connection

© Indicio PBC 2022

Demo: Creating a Connection

© Indicio PBC 2022

Demo: Creating a Connection

© Indicio PBC 2022

Demo: Creating a Connection

6. Issuing a Credential

© Indicio PBC 2022

© Indicio PBC 2022

Anonymous Credentials

● Zero-knowledge proofs

● Selective disclosure

● Revocation

Indicio Meetup:
How to use ACA-Py to issue and
verify W3C JSON-LD credentials

Tuesday, November 29 | 12pm EST / 5pm GMT

© Indicio PBC 2022

The Issuer Role

● Decide which credentials to issue and to whom

● Interact with the holder

● Write to the ledger

● Perform cryptographic computations

● Issue the credential

The issuer does not write personally identifiable information to the ledger

Issuer responsibilities

© Indicio PBC 2022

The Verifiable Credential Implementation

Issuer

Holder

Ledger

Verifier

© Indicio PBC 2022

The Verifiable Credential Implementation

Issuer

Holder

Ledger

Verifier

1. Write DID, schema,
and credential
definition to the ledger

© Indicio PBC 2022

The Verifiable Credential Implementation

Issuer

Holder

Ledger

Verifier

1. Write DID, schema,
and credential
definition to the ledger

2. Sign and issue a
verifiable credential

© Indicio PBC 2022

The Verifiable Credential Implementation

Issuer

Holder

Ledger

Verifier

1. Write DID, schema,
and credential
definition to the ledger

2. Sign and issue a
verifiable credential

© Indicio PBC 2022

The Issuer Role

a. Anchor a public DID to a ledger

b. Write a new schema to the ledger or retrieve a
pre-existing schema from the ledger

c. Create a credential definition and write it to the ledger

d. Issue a verifiable credential

Write a DID, schema, and credential definition to the Ledger

© Indicio PBC 2022

a. Anchor a DID
Author
● Has privileges to create a transaction and issue credentials, but needs an

endorser to endorse their transaction

● DID must be on the ledger

Endorser
● Has privileges to write to the ledger

● DID must be on the ledger with endorser status

Transaction Author Agreement
● The text of agreement between network users and government

● Must be agreed to before anchoring a DID

Demo
Anchoring a DID

© Indicio PBC 2022

Demo: Anchoring a DID

Issuer Holder

© Indicio PBC 2022

Demo: Anchoring a DID

Copy DID and Verkey into https://selfserve.indiciotech.io/

Issuer

https://selfserve.indiciotech.io/

© Indicio PBC 2022

Demo: Anchoring a DID

Copy DID and Verkey using https://selfserve.indiciotech.io/

Issuer

https://selfserve.indiciotech.io/

© Indicio PBC 2022

Demo: Anchoring a DID

Issuer

© Indicio PBC 2022

Demo: Anchoring a DID

Issuer Holder

© Indicio PBC 2022

Demo: Anchoring a DID

Issuer Holder

© Indicio PBC 2022

b. Write or retrieve a schema

Schema: the data organization
structure that defines the attributes
in a credential

See schema on ledger using IndyScan.io

https://indyscan.io/home/SOVRIN_MAINNET

© Indicio PBC 2022

Demo: Writing a schema to the ledger

Issuer Holder

© Indicio PBC 2022

Demo: Writing a schema to the ledger

Issuer Holder

© Indicio PBC 2022

Demo: Writing a schema to the ledger

Issuer Holder

© Indicio PBC 2022

Demo: Writing a schema to the ledger

Issuer Holder

© Indicio PBC 2022

Demo: Writing a schema to the ledger
Issuer Holder

See the transaction on the ledger at:
https://indyscan.indiciotech.io/home/INDICIO_TESTNET

https://indyscan.indiciotech.io/home/INDICIO_TESTNET

© Indicio PBC 2022

c. Write a credential definition to the ledger

Credential definition: creates the
issuer-specific cryptographic keys
necessary for issuing a credential

Demo
Creating a schema and

credential definition

© Indicio PBC 2022

Demo: Creating a Credential Definition
HolderIssuer

© Indicio PBC 2022

Demo: Creating a Credential Definition
Issuer Holder

© Indicio PBC 2022

Demo: Creating a Credential Definition
Issuer Holder

© Indicio PBC 2022

Demo: Creating a Credential Definition

Issuer Holder

© Indicio PBC 2022

The Verifiable Credential Implementation

Issuer

Holder

Ledger

Verifier

1. Write DID, schema,
and credential
definition to the ledger

2. Sign and issue a
verifiable credential

© Indicio PBC 2022

A signed statement with attributes
about a subject.

Contents

● Metadata about the credential

● Attributes about the subject

● Proof (signature)

Verifiable Credential 1

Context
Type
ID
Issuer
Issue Date
Expiration Date
:

CredentialSubject
 GivenName
 FamilyName
 Birthdate
 :

Proof
 Signature
 Proof of Correctness
 Attributes
:

d. Issue a verifiable credential

© Indicio PBC 2022

Credential Issuance

Issuer Holder

Propose Credential

Offer Credential

Complete
Complete

Issue Credential

Send
Acknowledgement

Request Credential

© Indicio PBC 2022

Demo: Issuing a Credential

Issuer Holder

© Indicio PBC 2022

Demo: Issuing a Credential
Issuer Holder

© Indicio PBC 2022

Demo: Issuing a Credential

Issuer Holder

© Indicio PBC 2022

Demo: Issuing a Credential
Issuer Holder

© Indicio PBC 2022

Demo: Issuing a Credential

Issuer Holder

© Indicio PBC 2022

Demo: Issuing a Credential

Issuer Holder

© Indicio PBC 2022

Demo: Issuing a Credential
Issuer Holder

© Indicio PBC 2022

Demo: Issuing a Credential
Issuer Holder

Demo
Issuing a credential

7. Verifying a Credential

© Indicio PBC 2022

© Indicio PBC 2022

The Verifier Role

● Decide who and what to trust

● Interact with the holder

● Read from the ledger

● Perform cryptographic computations

The verifier does not interact with the issuer

Verifier responsibilities

© Indicio PBC 2022

Issuer

Holder

Ledger

Verifier

1. Write DID, schema,
and credential
definition to the ledger

2. Sign and issue a
verifiable credential

3. Create a
presentation

The Verifiable Credential Implementation

© Indicio PBC 2022

The Verifiable Credential Implementation

Issuer

Holder

Ledger

Verifier

1. Write DID, schema,
and credential
definition to the ledger

2. Sign and issue a
verifiable credential

3. Create a
presentation

4. Read DID, schema,
and credential definition
from the ledger and
verify attestations

© Indicio PBC 2022

The Verifiable Credential Implementation

Issuer

Holder

Ledger

Verifier

1. Write DID, schema,
and credential
definition to the ledger

2. Sign and issue a
verifiable credential

3. Create a
presentation

4. Read DID, schema,
and credential definition
from the ledger and
verify attestations

© Indicio PBC 2022

Basic Presentation

Verifier Holder

Propose Presentation

Send Presentation

Presentation Request

Send
Acknowledgement

Complete

Verify

Complete

Approve

© Indicio PBC 2022

Demo: Verifying a Credential
Verifier Holder

© Indicio PBC 2022

Demo: Verifying a Credential

HolderVerifier

© Indicio PBC 2022

Demo: Verifying a Credential

HolderVerifier

© Indicio PBC 2022

Demo: Verifying a Credential
Issuer HolderVerifier

© Indicio PBC 2022

Demo: Verifying a Credential
HolderVerifier

© Indicio PBC 2022

Demo: Verifying a Credential
HolderVerifier

© Indicio PBC 2022

Demo: Verifying a Credential
HolderVerifier

© Indicio PBC 2022

Demo: Verifying a Credential
HolderVerifier

© Indicio PBC 2022

Demo: Verifying a Credential
HolderVerifier

© Indicio PBC 2022

Demo: Verifying a Credential
HolderVerifier

© Indicio PBC 2022

Demo: Verifying a Credential

HolderVerifier

© Indicio PBC 2022

Types of Presentations

Full Disclosure Presentation
● All attributes are revealed from one verifiable credential

Multiple Credentials Presentation
● All attributes are revealed from multiple verifiable

credentials
● A single credential does not contain all of the required

attributes

© Indicio PBC 2022

Types of Presentations

Selective Disclosure
● Only the minimum required attributes are revealed

from one or more verifiable credentials

Predicate Proof Presentation
● Reveals information about attribute value without

revealing the value (e.g., reveals “true” if age >= 21)

Revocation: the ability to revoke a credential

Demo
Verifying a credential

© Indicio PBC 2022

Conclusion
We have:

● Discussed Aries Cloud Agent Python, the Aries toolbox and other
codebases, agents, and DIDComm messaging

● Started up and connected agents

● Issued and verified credentials

© Indicio PBC 2022

Join Us and Get Started!
● Follow the links in the handout to look at the code.
● Join or listen to community meetings.
● Try stuff and ask questions.
● Contribute if you are able.
● Reach out to any of us if we can help.

