
© Copyright 2020 Xilinx

Haris Javaid
27 July 2021

Blockchain Machine
Accelerating Validation Bottlenecks in Hyperledger 
Fabric



© Copyright 2020 Xilinx

Agenda

˃ Xilinx at a Glance

˃ Hyperledger Fabric: Overview

˃ Hyperledger Fabric: Performance Bottlenecks

˃ Blockchain Machine: Networking and Compute Accelerators

˃ Summarized Results

˃ Concluding Remarks

˃ Acknowledgements: Ji Yang, Nathania Santoso, Mohit Upadhyay, S Mohan, 
Chengchen Hu, Gordon Brebner



© Copyright 2020 Xilinx

Xilinx at a Glance

˃ Inventor of the FPGA (Field Programmable Gate Array)

˃ Over 4,000 patents held

˃ Founded: 1984;  Public: 1990;  NASDAQ: XLNX

˃ Corporate headquarters in San Jose, USA

˃ Regional headquarters in Ireland and Singapore

˃ Around 4,900 employees worldwide

˃ More than 20,000 customers worldwide



© Copyright 2020 Xilinx

Xilinx Programmable Acceleration Platform



© Copyright 2020 Xilinx

Blockchain Application Scalability

˃ Example scaling up:
1. One retailer, selected products
2. One retailer, all products
3. Major retailers, all products
4. All retailers, all products

˃ Estimated transactions per second:
1. 40,000
2. 400,000
3. 2,500,000
4. 250,000,000

Software-only wall: 400K, 
based on today’s best plus 10x 
future optimization

Another 10x-100x needed 
from acceleration



© Copyright 2020 Xilinx

Why Hyperledger Fabric?

˃ Enterprise-grade implementation of a permissioned blockchain
Only authorized nodes can be part of or interact with the blockchain network
Consensus is delegated to a few nodes (unlike power-hungry proof-of-work mining in public 
blockchains such as Bitcoin)
Not associated with a cryptocurrency

˃ Open-sourced under Linux Foundation
IBM contributed the initial implementation, and sells a blockchain product based on this open-
source code

˃ Enterprise applications in a wide range of industries
Banking, finance, supply chain, transportation, telecom, etc.

˃ Most widely used permissioned blockchain platform under the Hyperledger umbrella
Other blockchains include Sawtooth (Intel), Besu (Consensys), etc.



© Copyright 2020 Xilinx

Hyperledger Fabric Transactions

1. Client invokes a transaction (by sending it to endorsers)

2. Peer sends endorsement (ECDSA signature, and database 
read/write sets) to the client, which collects endorsements from 
relevant peers

3. Client submits the transaction to ordering service (for being 
ordered and included in a block)

4. Orderer sends confirmation to client

5. Orderer broadcasts the block to peers (after a timeout or block 
has reached its limit)

6. Each peer validates the block and sends commit notification to 
client

1

4
5

5

6

O

EEE

V
VVV

client endorsing peers
ordering 
service

non-endorsing 
peers

peer1 peer2 peer3 orderers peer4

3

2

2



© Copyright 2020 Xilinx

Hyperledger Fabric (Validator)

Validator peer (V):
• Verifies the orderer signature
• Verifies each transaction’s syntax and creator signature
• Runs validation system chaincode (vscc) on each transaction

• Validates each endorsement of the transaction
• Ensures endorsements satisfy the endorsement policy

• Reads from state database to create read sets of all the transactions
• Runs multi-version concurrency control (mvcc) to check read-write conflicts across 

the transactions
• Compares current read sets with those from the endorsement phase

• Commits block to ledger
• Updates state database with the write sets of valid transactions

Validation phase is one of the major bottlenecks [1, 2, 3]

non-endorsing 
peers

V

peer4

[1] P. Thakkar, S. Nathan, and B. Vishwanathan, “Performance Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform,” in MASCOTS, 2018.
[2] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second,” in ICBC, 2019. 
[3] P. Thakkar and S. Nathan. 2021. “Scaling Hyperledger Fabric Using Pipelined Execution and Sparse Peers,” arXiv:2003.05113, 2020.

Block

statedb read

mvcc

2

ledger write

statedb write

historydb write

3

block verify

tx verify

1

vscc



© Copyright 2020 Xilinx

Bottlenecks in Validator Peer

˃ Retrieving block and transaction data involves unmarshalling of many protocol buffers

˃ Validation of a block involves verification of many ECDSA signatures, which becomes 
the critical path

˃ State database accesses are typically slow

˃ Ledger write takes longer for larger block sizes, and is an I/O bound operation



© Copyright 2020 Xilinx

Blockchain Machine (1)

˃ Goals
Build FPGA based hardware accelerators for Hyperledger Fabric
Hardware/software co-design setup
Improve performance metrics: transaction throughput, confirmation time, etc.

˃ Current design
Implements validator peer (validation phase of Fabric) on a network-attached Xilinx Alveo card
‒ Hardware-friendly protocol to send blocks
‒ Block/transaction data is retrieved in hardware directly from the network interface
‒ Configurable and efficient block-level and transaction-level pipeline in hardware

Integrates with Fabric v1.4 LTS



© Copyright 2020 Xilinx

Blockchain Machine (2)

CPU

block_processor reg_mapprotocol_processor

Network 
Interface

FPGA Card

Server/Node

˃ All the network traffic goes through the FPGA card with integrated network interface
CPU NIC is not used

˃ The protocol_processor
filters blockchain machine related packets, and forwards relevant data to block_processor
forwards other packets (not intended for blockchain machine) to/from the CPU
Block data streams in from the FPGA card network interface to block_processor



© Copyright 2020 Xilinx

Blockchain Machine (3)

CPU

block_processor reg_mapprotocol_processor

Network 
Interface

FPGA Card

Server/Node

˃ The block_processor contains
Block-level and transaction-level pipeline to process the block and its transactions
Parallel-pipelined architecture for high throughput
ECDSA verification engines, key-value based database, control/status registers, etc.



© Copyright 2020 Xilinx

Blockchain Machine (4)

CPU

block_processor reg_mapprotocol_processor

Network 
Interface

FPGA Card

Server/Node

˃ The reg_map serves as the hardware/software interface
Fabric peer software on CPU gathers block validation results using an API
Commits the block to ledger just like the software-only validator peer



© Copyright 2020 Xilinx

Hardware-friendly Protocol

˃ Each block is broken down into three sections: header, transactions, metadata
Each section is sent separately in its own packet
Repetitive data (such as identity certificates) are replaced with encoded ids

˃ Self-contained UDP packets
Each packet contains annotations in its header for efficient retrieval of data from its payload, without 
waiting for other packets



© Copyright 2020 Xilinx

Protocol Processor

˃ The protocol_processor acts as the hardware-friendly receiver
Parses each packet and uses annotations embedded in its header to extract the relevant data
Transforms extracted data for block_processor (e.g. calculates hash of the block, transaction, etc.)



© Copyright 2020 Xilinx

Block Processor Architecture – Stage 1

˃ Two stage block-level pipeline (two blocks processed in a pipelined fashion)

˃ block_verify verifies the orderer signature on the block
block_fifo: each element contains block-level data like block number, number of transactions, 
orderer signature, etc.
One ecdsa engine is dedicated to this stage.

block_verify block_validate

parallel-pipelined architecture with ecdsa engines + 
key-value database

block_fifo

tx_fifo ends_fifo rdset_fifo wrset_fifo

res_fifoecdsa
engine

block_monitor



© Copyright 2020 Xilinx

Block Processor Architecture – Stage 2

˃ block_validate validates all the transactions in a block
Multiple transactions can be processed in parallel, and tx validation results are collected.
res_fifo: each element contains validation data like block number, valid/invalid tx flags, latency, etc.

block_verify block_validate

parallel-pipelined architecture with ecdsa engines + 
key-value database

block_fifo

tx_fifo ends_fifo rdset_fifo wrset_fifo

res_fifoecdsa
engine

block_monitor



© Copyright 2020 Xilinx

Block Validate Architecture – Stage 1

˃ Parallel-pipelined architecture with three transaction-level stages

˃ tx_verify verifies the client/creator signature on the transaction
tx_fifo: each element contains transaction-level data like tx number, client/creator signature, 
number of endorsements, number of read and write keys, etc.
One ecdsa engine is used in each tx_verify instance.

˃ Multiple tx_verify instances can be included in the design, which operate in parallel.

tx_verify_1 tx_vscc_1

tx_fifo

ends_fifo

rdset_fifo wrset_fifo

tx validation 
data

ecdsa
engine n…

endorsement policy 
evaluator

tx_verify_n tx_vscc_n

… …

tx_mvcc_write

key-value 
database

ecdsa
engine 1ecdsa

engine



© Copyright 2020 Xilinx

Block Validate Architecture – Stage 2

˃ tx_vscc verifies the endorsements of a transaction against the endorsement policy
ends_fifo: each element contains endorser id and endorsement data (e.g. signature, etc.)
Endorsements are scheduled across multiple ecdsa engines
Policy evaluator keeps endorsement policies on a per-chaincode basis
Configurable number of ecdsa engines (based on application requirements) in each tx_vscc
instance

˃ Multiple tx_vscc instances can be included in the design, which operate in parallel.

tx_verify_1 tx_vscc_1

tx_fifo

ends_fifo

rdset_fifo wrset_fifo

tx validation 
data

ecdsa
engine n…

endorsement policy 
evaluator

tx_verify_n tx_vscc_n

… …

tx_mvcc_write

key-value 
database

ecdsa
engine 1ecdsa

engine



© Copyright 2020 Xilinx

Block Validate Architecture – Stage 1 & 2

˃ Parallel-pipelined architecture
Transactions are scheduled across the tx_verify/tx_vscc instances (transactions of a block can 
be validated in parallel)
Tx validation results are collected in-order from tx_vscc for the next stage
Configurable number of ecdsa engines (based on application requirements) in each tx_vscc
instance
Configurable number of tx_verify/tx_vscc instances (based on application requirements)

tx_verify_1 tx_vscc_1

tx_fifo

ends_fifo

rdset_fifo wrset_fifo

tx validation 
data

ecdsa
engine n…

endorsement policy 
evaluator

tx_verify_n tx_vscc_n

… …

tx_mvcc_write

key-value 
database

ecdsa
engine 1ecdsa

engine



© Copyright 2020 Xilinx

Block Validate Architecture – Stage 3

˃ tx_mvcc_write looks up read keys from database for version check, and commits write 
keys of valid transactions to database 

rdset_fifo: each element contains a read key-version pair
wrset_fifo: each element contains a write key-value pair
key-value database: configurable key/value size, 1 cc read latency, 10-20 ccs write latency, 
internal lock mechanism to disallow reading of the key being written/updated

tx_verify_1 tx_vscc_1

tx_fifo

ends_fifo

rdset_fifo wrset_fifo

tx validation 
data

ecdsa
engine n…

endorsement policy 
evaluator

tx_verify_n tx_vscc_n

… …

tx_mvcc_write

key-value 
database

ecdsa
engine 1ecdsa

engine



© Copyright 2020 Xilinx

Putting It All Together

˃ Blockchain Machine implemented as the user logic block inside Xilinx OpenNIC [1]

CMAC Subsystem

CMAC

Rx 
Adapter

Tx 
Adapter

QDMA Subsystem

PCIe 
QDMA

H2C 
Adapter

C2H 
Adapter

AXI-Lite 
Fanout

User Logic

block
processor

reg
map

protocol
processor

CPU

FPGA Card

Server/Node

[1] Xilinx. OpenNIC Project. https://github.com/Xilinx/open-nic



© Copyright 2020 Xilinx

Putting It All Together

˃ Hardware/Software partitioning in Blockchain Machine
Data from hardware is read through a Go language API

Block

statedb read

mvcc

2

ledger write

statedb write

historydb write

3

block verify

tx verify

1

vscc

CPU Block

2

ledger write

historydb write

3

block verify

tx verify

1

Block

statedb read

mvcc

2

statedb write3

block verify

tx verify

1

vscc

CPU FPGA

API



© Copyright 2020 Xilinx

Evaluation Setup

˃ Hyperledger Fabric network
Caliper runs the smallbank benchmark (account creation, money transfers, etc.)
Orderer and peers are run in their own VMs (multiple vCPUs) -- number of vscc threads is 
the same as number of vCPUs
Blockchain Machine (BMac) peer is programmed on Alveo U250 board with multiple 
tx_validators (like vscc threads)

Ordering Service

Raft Solo

Hyperledger Caliper

Multiple Clients
20,000 transactions

Organization 1

Certificate Authority

Peer0

Endorser
Validator

Peer2

Blockchain 
Machine 
Validator

Peer1

Validator

Organization 2

Certificate Authority

Peer0

Endorser
Validator

Peer1

Validator



© Copyright 2020 Xilinx

Results (1)

˃ Block latency = time spent in validation phase

˃ Commit throughput = transactions committed per second

˃ The ledger write operation is excluded because it is executed on CPU in all cases

˃ At least 10x speedup

3,047 4,308 4,878
38,296 49,225 50,675

0

25

50

75

100

125

150

0.1

1

10

100

50 100 150 200 250

Th
ro

ug
hp

ut
 [x

10
00

 tp
s]

Block Size

lat(endorser) lat(sw_validator) lat(BMac) thr(endorser) thr(sw_validator) thr(BMac)

3,505 4,308 4,901 5,31525,845
49,225 68,901 86,152

0

25

50

75

0.1

1

10

100

4 8 12 16

La
te

nc
y 

[m
s]

vCPUs / tx_validators



© Copyright 2020 Xilinx

Results (2)

˃ Blockchain Machine can be
˃ Programmed with multiple endorsement policies/chaincodes
˃ Adapted to endorsement policy (cryptographic workload)

˃ 4x2 means 4 parallel tx_validators each with 2 ecdsa engines per tx_vscc

5,169 4,333 3,845 3,754 3,482

49,235
  25,851

0

25

50

75

0.1

1

10

100

1of1 1of2 2of2 2of3 3of3 2of4 3of4 4of4

Th
ro

ug
hp

ut
 [x

10
00

 tp
s]

Endorsement Policy

3,805
2,685

49,225

 25,850

49,218

32,313

 

32,311

0

25

50

75

0.1

1

10

100

2of3 3of3 3of4 complex

La
te

nc
y 

[m
s]

Endorsement Policy

lat(sw_validator) lat(BMac8x2) lat(BMac5x3) thr(sw_validator) thr(BMac8x2) thr(BMac5x3)



© Copyright 2020 Xilinx

Results (3)

˃ Resource utilization on Alveo U250 board

˃ 4x2 means 4 parallel tx_validators each with 2 ecdsa engines per tx_vscc

Resource 4x2 5x3 8x2 12x2 16x2
LUT / LUTRAM 20.9% 25.4% 28.5% 35.8% 43.3%

FF 6.9% 6.9% 8.0% 9.1% 10.3%
BRAM / URAM 13.1% 13.1% 13.1% 13.1% 13.1%



© Copyright 2020 Xilinx

Concluding Remarks

˃ Permissioned blockchains are well-suited for
Network-attached acceleration
Hardware/software co-design
FPGA programmability

˃ Blockchain Machine proof-of-concept shows promising results

˃ Focusing on open-source contributions
Hyperledger Labs project (already launched, stay tuned for more updates soon!)
Setup in XACC NUS (just started)

https://github.com/hyperledger-labs/fabric-machine
http://xacchead.d2.comp.nus.edu.sg/


© Copyright 2020 Xilinx

Adaptable.
Intelligent.



© Copyright 2020 Xilinx

Hyperledger Fabric Overview

[1] E. Androulaki et al., “Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains” in EuroSys, 2018.



© Copyright 2020 Xilinx

Hyperledger Fabric Transactions

1. Client invokes a transaction (by sending it to endorsers)

2. Peer sends endorsement (client collects all endorsements)

3. Client submits the transaction to ordering service (for being 
ordered and included in a block)

4. Orderer sends confirmation to client

5. Orderer broadcasts the block to peers (after a timeout or block 
has reached its limit)

6. Peer sends commit notification to client

1

4
5

5

6

O

EEE

V
VVV

client endorsing peers
ordering 
service

non-endorsing 
peers

peer1 peer2 peer3 orderers peer4

3

2

2



© Copyright 2020 Xilinx

Hyperledger Fabric (Endorser + Orderer)

Endorsing peer (E):
• Verifies client’s identity and checks whether it is authorized
• Simulates the execution of the chaincode (smart contract) to 

create the transaction’s read and write sets against its local 
state database

• Runs endorsement system chaincode (escc) to sign the 
results of the transaction simulation

• Returns the result to the client

Ordering service (O):
• Enqueues the incoming transactions
• Creates a block of transactions after a timeout or enough 

transactions were available
• Signs the block
• Broadcasts the block to the peers through Gossip protocol

client endorsing peers
ordering 
service

1

3

4
5

5

6

O

non-endorsing 
peers

EEE

V
VVV

peer1 peer2 peer3 orderers peer4

2

2



© Copyright 2020 Xilinx

Hyperledger Fabric (Validator)

Validator peer (V):
• Verifies the orderer signature
• Verifies each transaction’s syntax and creator signature
• Runs validation system chaincode (vscc) on each transaction

• Validates each endorsement of the transaction
• Ensures endorsements satisfy the endorsement policy

• Reads from state database to create read sets of all the transactions
• Runs multi-version concurrency control (mvcc) to check read-write conflicts across 

the transactions
• Compares current read sets with those from the endorsement phase

• Updates state database with the write sets of valid transactions
• Commits block to ledger

Validation phase is one of the major bottlenecks [1, 2, 3]

non-endorsing 
peers

V

peer4

[1] P. Thakkar, S. Nathan, and B. Vishwanathan, “Performance Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform,” in MASCOTS, 2018.
[2] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second,” in ICBC, 2019. 
[3] P. Thakkar and S. Nathan. 2021. Scaling Hyperledger Fabric Using Pipelined Execution and Sparse Peers. arXiv:2003.05113.

Block

statedb read

mvcc

2

ledger write

statedb write

historydb write

3

block verify

tx verify

1

vscc


