
Architecture 
Series: 
Episode 7
Event-driven programming 
Peter Broadhurst 
Community Call 4th August 2021



Request/reply vs. event-driven

Request/reply (sync) Events (async)
Send one request, wait for one response. Process that 
response when it arrives, then move onto the next thing. 

App feedback: Spin until it’s done 
Patterns: One-to-one 
Outcomes: Success, failure, timeout (undefined) 
Failure handling strategies: 
- Idempotent APIs – safely retry

Send events when something happens. Keep track of state. 
Process responses/confirmations/follow-ons as they happen 

App feedback: Live update every time it changes (inc. UX) 
Patterns: One-to-one, one-to-many, many-to-many, many-to-one 
Outcomes: A set of state changes in a deterministic sequence 
Failure handling strategies: 
- Idempotent processing – re-process duplicates 
- Compensation logic (sagas) 
- Rejection with or without feedback



FireFly provides both 
(we’ll come back to this)



Event-driven enterprise architecture isn’t new…

Published 2003 … the year I started in this game 
https://www.enterpriseintegrationpatterns.com/ 

https://www.enterpriseintegrationpatterns.com/


Image credit… and a good read: 
https://www.brianstorti.com/the-actor-model/

A decade later event-driven programming inspired 
a wave of new programming languages/patterns

Systems built as Reactive Systems are more flexible, loosely-coupled 
and scalable. This makes them easier to develop and amenable to change. 
They are significantly more tolerant of failure and when failure does occur 
they meet it with elegance rather than disaster. Reactive Systems are 
highly responsive, giving users effective interactive feedback.

2014: https://www.reactivemanifesto.org/

https://www.reactivemanifesto.org/glossary#Scalability
https://www.reactivemanifesto.org/glossary#Failure
https://www.reactivemanifesto.org/glossary#User


Microservice events-driven patterns evolved in a 
post-ACID age of REST and at-least once delivery

… in different databases owned by different services the application 
cannot simply use a local ACID transaction. (Chris Richardson)

2017: https://microservices.io/patterns/data/saga.html



The next phase in event-driven apps: 
Decentralized applications in a multi-party system

FireFly Node

Core

Registry

Connectors

Infra Runtimes

U
I

Prv DB

Apps

FireFly Node

Core

Registry

Connectors

Infra Runtimes

U
I

Prv DB

Apps

MESSAGES EVENTS

DATA SHARING TRANSACTIONS

FireFly Node

Core

Registry

Connectors

Infra Runtimes

U
I

Prv DB

Apps

FireFly Node

Core

Registry

Connectors

Infra Runtimes

U
I

Prv DB

Apps

What hasn’t changed: 
- Most processing is member specific 

- Automated proprietary core systems 
- Human decision making 
- Agreed state transitions 

- Most data is privately replicated 
- Governed by business needs and security 
- Stored private in each member 
- Synchronized to multiple core systems 

 
What has changed: 
- Some logic can be executed deterministically 

- Blockchain 
- Trusted compute / zero-knowledge 

- Some data/proofs can be stored centrally 
- Blockchain / IPFS 

- Multiple parties share a single event sequence 
- This is revolutionary for event-driven apps 



Microservices to multi-party - key difference 1: 
You must process your own events in an order shared with other members



Microservices to multi-party - key difference 1: 
You must process your own events in an order shared with other members

Coming soon 
(Issue #112) 

 
FireFly will provide a 
convenience option 

to block until the 
confirmation arrives



Microservices to multi-party - key difference 2: 
Event history can go back to time=0 and be immutable – supporting late join/replay

Traditional Message-Queues and Streams 
Store + forward data reliably

Blockchain Ledgers 
Complete history of time

- Optimized for short-term storage (seconds/minutes) 
- Optimized for low latency delivery (milliseconds) 
- Capable of coping with periods of downtime (hours/days) 
- Designed to decouple system availability 
- Ordering is guaranteed only within a single runtime (broker)

- Optimized for building immutable transaction history (years/decades) 
- Optimized for establishing multi-party consensus (seconds/minutes) 
- Designed for wide fault tolerance – including byzantine (indefinite) 
- Designed to decouple sovereign IT infrastructures 
- Ordering is guaranteed globally within a ledger (blockchain/channel)



Microservices to multi-party - key difference 2: 
Event history can go back to time=0 and be immutable – supporting late join/replay

Traditional Message-Queues and Streams 
Store + forward data reliably

Blockchain Ledgers 
Complete history of time

- Optimized for short-term storage (seconds/minutes) 
- Optimized for low latency delivery (milliseconds) 
- Capable of coping with periods of downtime (hours/days) 
- Designed to decouple system availability 
- Ordering is guaranteed only within a single runtime (broker)

- Optimized for building immutable transaction history (years/decades) 
- Optimized for establishing multi-party consensus (seconds/minutes) 
- Designed for wide fault tolerance – including byzantine (indefinite) 
- Designed to decouple sovereign IT infrastructures 
- Ordering is guaranteed globally within a ledger (blockchain/channel)

You need both!



FireFly provides both 
(back to the practical dev info)

Focusing here today



What an event-driven FireFly app looks like 

App backend microservice(s) - Node.js, Java, Golang, .NET etc.

UI in Browser/Device  
(React, Material, Vue, Android, iOS)

Core Systems Integration  
(ESB, Java etc.)

External users/interfaces



What an event-driven FireFly app looks like 

App backend microservice(s) - Node.js, Java, Golang, .NET etc.

UI in Browser/Device  
(React, Material, Vue, Android, iOS)

Core Systems Integration  
(ESB, Java etc.)

External users/interfaces

App DB  
 

Latest 
State

FireFly DB 
 

Queryable  
History of 

Events



What an event-driven FireFly app looks like 

App backend microservice(s) - Node.js, Java, Golang, .NET etc.

UI in Browser/Device  
(React, Material, Vue, Android, iOS)

Core Systems Integration  
(ESB, Java etc.)

External users/interfaces

Event handler: process event, update state, emit more events, acknowledge

App DB  
 

Latest 
State

Events
Websockets 
Webhooks 
(pluggable)

Queries
REST/HTTP

History / status

FireFly DB 
 

Queryable  
History of 

Events



What an event-driven FireFly app looks like 

App backend microservice(s) - Node.js, Java, Golang, .NET etc.

UI in Browser/Device  
(React, Material, Vue, Android, iOS)

Core Systems Integration  
(ESB, Java etc.)

External users/interfaces

Event handler: process event, update state, emit more events, acknowledge

App DB  
 

Latest 
State

Actions Ack
REST/HTTP

Events
Websockets 
Webhooks 
(pluggable)

Queries
REST/HTTP

History / status

FireFly DB 
 

Queryable  
History of 

Events



What an event-driven FireFly app looks like 

App backend microservice(s) - Node.js, Java, Golang, .NET etc.

UI in Browser/Device  
(React, Material, Vue, Android, iOS)

Core Systems Integration  
(ESB, Java etc.)

External users/interfaces

Event handler: process event, update state, emit more events, acknowledge

App DB  
 

Latest 
State

Actions Ack
REST/HTTP

Events
Websockets 
Webhooks 
(pluggable)

Queries
REST/HTTP

History / status

FireFly DB 
 

Queryable  
History of 

Events

App subscriptions to events can be: 
 
Named (durable) 

Your app has a name, and FireFly will 
deliver each event once (with at-least-
once delivery) to that app. If there are 
multiple WebSocket conns, only one will 
get it. FireFlly will track which events 
your app has received while it’s offline. 
 
Ephemeral (non-durable) 
 
Your app will receive messages as long as 
it is connected. If multiple instances 
connect, each will get a copy of the 
event. If your app disconnects, it misses 
any events while it’s away.



What an event-driven FireFly app looks like 

App backend microservice(s) - Node.js, Java, Golang, .NET etc.

UI in Browser/Device  
(React, Material, Vue, Android, iOS)

Core Systems Integration  
(ESB, Java etc.)

External users/interfaces

Event handler: process event, update state, emit more events, acknowledge

App DB  
 

Latest 
State

Actions Ack
REST/HTTP

Events
Websockets 
Webhooks 
(pluggable)

Queries
REST/HTTP

History / status

FireFly DB 
 

Queryable  
History of 

Events

You must ack every 
event, or nack to 
drive retry logic. 

 
Auto-ack is available.



What an event-driven FireFly app looks like 

App backend microservice(s) - Node.js, Java, Golang, .NET etc.

UI in Browser/Device  
(React, Material, Vue, Android, iOS)

Core Systems Integration  
(ESB, Java etc.)

Business API

Actions Ack
REST/HTTP 
WebSockets 
JMS, GRPC 
AMQP etc.

Events

External users/interfaces

Websockets 
Webhooks 

JMS, GRPC 
AMQP etc.

Event handler: process event, update state, emit more events, acknowledge

App DB  
 

Latest 
State

Queries
REST/HTTP 

etc. Data / status

Actions Ack
REST/HTTP

Events
Websockets 
Webhooks 
(pluggable)

Queries
REST/HTTP

History / status

FireFly DB 
 

Queryable  
History of 

Events



Webhooks vs. WebSockets

Lo
ad
 

Ba
la

nc
er

App Instance 1

App Instance 2

App Instance 3

Webhook 
Subscription 
 
Named

App Instance 1

App Instance 2

App Instance 3

WebSocket 
Subscription 
 
Named or ephemeral

Message

Message

Message

App Microservice instances or Serverless (Lambda etc.)

App Microservice instances (or UI browser apps)

Connect

Message
Connect

Message
Connect

Message



Open 
Discussion
Community Call 4th August 2021


