
 Hyperledger Fabric (Multi-Cloud)
Interoperability Working Group

Abstract
This document represents the current effort of the Hyperledger Fabric community to specify and
standardize an interoperability workflow that allows organizations hosted on different cloud
vendors to establish and join business networks independent from the infrastructure where the
ordering services are hosted.
To archive this, this document lays out the necessary configuration artifacts that need to be
provided by the joining organization, the high-level message flow and a chaincode based voting
mechanism to approve or reject channel join requests.
Furthermore, this proposal should be fully compatible with Hyperledger Fabric 1.4 LTS.

Next Action Items

Date Open Action Items

17.01.2018 Specify the channel join process

24.01.2018 Incorporate feedback and verify that process works as required

31.01.2018 Schedule interoperability test in public domain

Scenario Description

The scope for the Fabric interoperability group is initially limited to a defined scenario.

In this scenario we have to distinguish between the technical interoperability (“joining a Fabric
peer node to an existing Fabric channel”) and the business interoperability (“business
network”). The interoperability workgroup will focus only on the technical interoperability.

We assume that there already exists a Fabric channel relative to an ordering service. Attached
to this channel can be any number of Fabric peer nodes. It is assumed for the discussion that
each Fabric peer node has been provisioned by a (cloud) vendor in the name of the customer.
In a simpler variation, any customer can also be their own “vendor”.

Important: in this scenario there exists two levels of interconnection. At the business level, we
have typically a business network, which is agreed between any number of customers and
governed by the business network rules and regulations. The second interconnected entity is
the actual Fabric channel that spans the different Fabric nodes. It is NOT expected that any
vendor will be part of the business network.

Integration story: CustomerX, having provisioned a Fabric peer node with its preferred vendor,
wishes to join its Fabric peer node into the business network Fabric channel.

Assumed:
● In general, all Fabric peers and orderers can be accessed using public DNS and public

IP addresses.
● This proposal targets to be fully compatible with Hyperledger Fabric 1.4 LTS since that it

is expected to be widely adopted over a long period of time.
● That customerX has an agreement with vendorX for the provisioning of a Fabric peer

node. (Note that in all simplified scenarios customerX can be equal to vendorX and do
their own provisioning.)

● Initially neither customerX, nor vendorX, has access to the existing Fabric channel.
● VendorX, not been part of the business network, does NOT have the mandate to interact

with the business network (in the name of customerX). All interaction with the business
network (the business entity) must be between customerX and any/all parties of the
business network (here customers A,B&C). No vendor is involved in this business
interaction.

● A business agreement between customerX and the business network is reached before
a technical interoperability is established.

Out of Scope:
● Interaction model between any customer and vendor. It is accepted that each vendor will

have its own (cloud based) Fabric offering and will provide its customers a rich UI and
process steps to complete all relevant actions, or require that customers complete
relevant actions via the Fabric SDK.

● The interaction between the customers within the business network. It is used some form
of interaction model is defined, for example via emails, faxes, websites or predefined
APIs. For customerX to join the business network, it will require some form of interaction
paradigm with other business network members.

In Scope:
● The artifacts that customerX must exchange with any/all customers within the business

network to enable the technical interoperability. This will include a definite description of
all relevant artifacts that must be supplied (for example certificates, TCP/IP
interconnectivity information, etc) and the format in which these artifacts must be
encoded in for transport (JSON, protobuf, etc).

● Also, in scope is the definition of predefined “management” chaincode that can be
used by business network members to facilitate the steps required by the business
network to agree and execute the technical Fabric peer node join request. Note: this
“management” chaincode is effectively business network “business” and could be

enhanced by the business network to contain additional business logic. The Fabric
interoperability working group can define and deliver an example of such a
“management” chaincode. What is NOT defined, is how the business network interacts
with the management chaincode, whether this is managed and done by the different
customers within the business network directly, or whether any vendor takes over part of
this operation aspects.
Footnote: Optional, it should be considered to define (a subset of) chaincode functions which are
standardized as mandatory, so as to enable a more homogenous management of business
networks by either customers and/or vendors.

Approach:
● KISS: The goal of the interoperability working group is to attempt to define a possible

solution that uses existing Fabric technology without any additional development as far
as possible.

Expected Interaction Model:
● CustomerX interacts with the business network (any/all members) and reach a business

agreement to join the business network.
● CustomerX interacts with VendorX to obtain the defined artifacts encoded in the defined

format for the interoperability.
● CustomerX interacts with the business network (visualized above as the blue arrow

between customerX and customerA) to transfer the artifacts to the business network
(“join request”).

● The business network (customers A,B&C) interacts with their relevant vendors (A,B&C)
and/or the “management” chaincode (visualized in blue above) to complete the relevant
technical steps to enable the interoperability.

● The business network returns to customerX defined artifacts in the defined format (“join
response”).

● CustomerX (possibly with the help of vendorX), based on the returned artifacts, joins the
Fabric channel.

Channel Join Process

For the channel join request, the focus will be on the artifacts that needs to be exchanged
between customerX and customerA (as proxy for the complete business network). Only the
artifacts to be exchanged is defined, the exchange process, for example via email, is outside the
scope of the definition.
Also not defined is the interaction between any customer and vendor. It is assumed that either
the customer has a direct access to the peer node and can complete all steps required, or that
the customer has access to a management UI of the vendor where the relevant join steps are
encapsulated.

Join Request:

The join-request should be based on native Hyperledger Fabric protobuf definition
(protos/common.ConfigGroup) since that includes all required information to represent an
organization on a Hyperledger Fabric channel. Furthermore, it integrates well with the existing
tooling.
The join-request can be generated with the existing Hyperledger Fabric tool set (configtxlator,
peer CLI, configtxgen).

General Workflow:

1. VendorX/CustomerX creates common.ConfigGroup (e.g. using configtxgen,
configtxlator). The result can be protobuf encoded or a JSON representation.

2. CustomerX sends the serialized protobuf or the JSON representation to customerA.
3. VendorA/CustomerA generates a channel update based on the current channel

configuration (e.g. using configtxlator).
4. CustomerA proposes the update to the other channel members, possibly using the

“management” chaincode.
5. CustomerB and customerC, if so defined or required by the business network rules, sign

the update and send it to customerA (e.g. using peer CLI) possible with the help of a
“management” chaincode. -- The “management” chaincode should support relevant
rules and policies, such as which customers are required to sign the update, which kinds
of conditions should apply, such as signing algorithm, consensus algorithm, etc. It is
important to understand that the “management” chaincode is a technical implementation
of the rules and regulations of this very specific business network (business entity) and
that it can be conceived that the “management” chaincode will be different between
different business networks.

6. CustomerA applies the Fabric channel update with the given signatures, signed by its
own organization.

https://github.com/hyperledger/fabric/blob/release-1.4/protos/common/configtx.pb.go#L367
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/configtxlator.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/peer-commands.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/configtxgen.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/configtxgen.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/configtxgen.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/configtxgen.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/configtxlator.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/configtxlator.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/configtxlator.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/configtxlator.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/peer-commands.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/peer-commands.html

Join Response:

The join-response should include the channelID and orderer endpoints including TLS
certificates so that the joining org (customerX) can download the channel genesis block via the
SDK or using the peer CLI.
The response should look like this:
{

“channelID”: “mybusinesschannel”,
“ordererEndpoints”: [“orderer0.org1.com:7050”],
“ordererTlsCertificates”: [“YmVpc3BpZWw….”]

}

Management Chaincode
The purpose of the management chaincode is to standardize the way how channel updates
(new channel members, configuration parameters) are shared will all the participants and how
the required signatures to authorize a channel update, are collected.

Assumptions:

● One instance of management chaincode should be installed/instantiated on each
Hyperledger Fabric channel.

● Per default it should be installed on each joined peer of the channel members.
● The recommended endorsement policy should be majority.

→ The chaincode endorsement policy should reflect the majority of the channel
members and might be upgraded periodically.

The minimum requirement to manage channel update proposals (upload new proposal, sign
proposal, list proposals) would require the following interfaces:

● proposeUpdate(update string) (proposalID string)
Channel members can propose a new channel update.

○ Update: the base64 encoded protos/common.ConfigUpdate
○ Returns: a new proposalID

● addSignature(proposalID string, signature string)
Channel members can add their signature to a proposed channel update.

○ Signature: the base64 encoded protos/common.ConfigSignature
● getProposals() ([]Proposal)

Channel members can view proposals to check the status, display them, or check if the
channel policy is already met.

https://github.com/hyperledger/fabric/blob/release-1.4/protos/common/configtx.pb.go#L304
https://github.com/hyperledger/fabric/blob/release-1.4/protos/common/configtx.pb.go#L304
https://github.com/hyperledger/fabric/blob/release-1.4/protos/common/configtx.pb.go#L546
https://github.com/hyperledger/fabric/blob/release-1.4/protos/common/configtx.pb.go#L546

Note: That the channel policy has to be checked manually by the user and not by the
chaincode.

○ Returns: the pending(/all) proposals with their update and signatures.
● getProposal(proposalID string) (Proposal)

Channel members can request the current status of the proposal.

Using these interfaces, all members of a channel would be able to participate in the channel
update process.

A rough workflow using this management chaincode could look like this:

1. CustomerA receives a channel join request from customerX e.g. via email.
2. CustomerA creates channel update and uses the ProposeUpdate interface of

the management chaincode and receives a proposalID.
3. CustomerA creates a signature on the proposed channel update and publishes it

via the AddSignature interface using the proposalID.
4. [optional] customerA informs other channel members about the new proposal.

This should normally happen via a Channel Management App of the vendors.
5. CustomerB and customerC add their signatures via the AddSignature

interface. (This call can be triggered via the custom UI implementation of a
vendor).

6. CustomerA monitors the signing process and sends the channel update to the
orderer when the channel update policy is fulfilled.

7. If the channel update has been accepted by the orderer, customerA compiles the
channel join response message and sends it back to customerX.

The outline of the described workflow is also visualized in the Channel Join Workflow section.
Furthermore, a high level overview of the proposed workflow from the view of different vendors
can be found in the Appendix: Example of Vendor Supported UI-Flow.

Channel Join Workflow

To Be Considered Next
This section contains topics and items that should be considered / be worked on after the basic
channel join scenario described above has been completed.

1 Handling of stale updates

2 Make sure that suggested process is fully compatible with HLF 2.0

3 Standardize the way how config artifacts are exchanged

Appendix

Example of Vendor Supported UI-Flow
In following we present an example how the interoperability workflow (presented in Channel
Join Workflow section) could be integrated into the vendor dashboards.

Step 1:
CustomerX downloads the JoinRequest (provisioned VendorX) and sends it via email to a
business network member.

Step 2:
CustomerA receives the joinRequest sent by customerX and uploads it via the UI offered by
VendorA. In the background, the UI proposes the channelUpdate via the standardized
interfaces of the management chaincode.

CustomerB gets a notification in his UI based on the emitted NewProposalEvent chaincode
event. CustomerB will be presented all the details about the new channel join request in his
dashboard. Via his dashboard, customerB can then approve the request. If he approves, his
signature will be added to the channelUpdateProposal.

CustomerA will receive a notification in his UI about the newly added signature via the
NewSignatureEvent. If the number of signatures is sufficient, customerA can now trigger the
channel update process. If the update was successful CustomerA can download the channel
join response and send it to customerX via email.

Step 3:
CustomerX receives the channelJoinResponse via email and uploads it via his Hyperledger
Fabric dashboard offered by vendorX. In the background the orderer endpoints, orderer
certificates and channel information are propagated to databases etc. so that the customer can
access the channel.

Example Bash Scripts

Create common.ConfigGroup (customerX)
Based on the configtx.yaml and the msp directories, the ConfigGroup can be created using
the configtxgen printOrg function.

configtxgen -printOrg Org1 > configGroup.json

Create common.ConfigUpdate (customerA)
In this section the ConfigUpdate is created by using fabric tools.

Download the current CONFIG block of the channel and save it as channel_block.pb .
Then, decode the block to JSON to be able to extract the config and update it later.

configtxlator proto_decode --type common.Block --input channel_block.pb --output
channel_block.json

Extract the channel config (assuming the CONFIG transaction is the first transaction).

cat channel_block.json | jq '.data.data[0].payload.data.config' >
channel_config.json

Extract the MSPID and the config of the new organization.

MSPID=$(cat configGroup.json | jq -r '.values.MSP.value.config.name')
CONFIG=$(cat configGroup.json)

Insert the new config of the organization into the channel config.

cat channel_config.json | jq ".channel_group.groups.Application.groups.${MSPID} =
${CONFIG}" > updated_config.json

Encode the original and updated config block to proto to calculate the diff.

configtxlator proto_encode --type common.Config --input channel_config.json
--output channel_config.pb

configtxlator proto_encode --type common.Config --input updated_config.json
--output updated_config.pb

Calculate the channel update based on the created artifacts.

configtxlator compute_update --original channel_config.pb --updated

updated_config.pb --channel_id=my-channel --output channel_update.pb

https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/configtxgen.html#print-an-organization-definition

Sign the Update (customerA…)
To be able to check the update content, it can be decoded by the following command.

configtxlator proto_decode --type common.ConfigUpdate --input channel_update.pb
--output channel_update.json

Create the signature to approve the update. This can be done using any SDK.
In case you want to use the peer CLI, the channel_update.pb has to be wrapped multiple
times into a common.Envelope. An official tutorial can be found here. Finally, the resulting
update_in_envelope.pb can be signed using the peer signconfig command.

peer channel signconfigtx -f update_in_envelope.pb

https://hyperledger-fabric.readthedocs.io/en/release-1.4/channel_update_tutorial.html#add-the-org3-crypto-material
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/peerchannel.html#peer-channel-signconfigtx-example

Example Management Chaincode
package main

import (
 "encoding/base64"
 "encoding/json"
 "fmt"
 "github.com/golang/protobuf/proto"
 "github.com/hyperledger/fabric/core/chaincode/shim"
 "github.com/hyperledger/fabric/protos/common"
 "github.com/hyperledger/fabric/protos/msp"
 pb "github.com/hyperledger/fabric/protos/peer"
 "math/rand"
 "time"
)

// ManagementChaincode example

type ManagementChaincode struct {
}

type Proposal struct {
 // Description describes the proposal.
 Description string `json:"description,omitempty"`

 // ConfigUpdate contains the base64 string representation of the common.ConfigUpdate.
 ConfigUpdate string `json:"config_update,omitempty"`

 // Signatures contains a map of signatures: mspID -> base64 string representation of
common.ConfigSignature

 Signatures map[string]string `json:"signatures,omitempty"`
}

const (
 ProposalIDLength = 12
 NewProposalEvent = "newProposalEvent"
 NewSignatureEvent = "newSignatureEvent"
 alphanum = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
)

func (mcc *ManagementChaincode) Init(stub shim.ChaincodeStubInterface) pb.Response {
 return shim.Success(nil)
}

func main() {
 rand.Seed(time.Now().UTC().UnixNano())

 err := shim.Start(new(ManagementChaincode))
 if err != nil {

 fmt.Printf("Error starting management chaincode: %s", err)
 }

}

func (mcc *ManagementChaincode) Invoke(stub shim.ChaincodeStubInterface) pb.Response {
 function, args := stub.GetFunctionAndParameters()

 switch function {
 case "proposeUpdate":
 return mcc.proposeUpdate(stub, args)

 case "addSignature":
 return mcc.addSignature(stub, args)

 case "getProposals":
 return mcc.getProposals(stub, args)

 case "getProposal":
 return mcc.getProposal(stub, args)

 default:
 return shim.Error("Invalid invoke function name. Expecting \"proposeUpdate\"
\"addSignature\" \"getProposals\" \"getProposal\" ")
 }

}

func (mcc *ManagementChaincode) proposeUpdate(stub shim.ChaincodeStubInterface, args
[]string) pb.Response {
 if len(args) != 2 {
 return shim.Error("incorrect number of arguments - expecting 2: configUpdate,
description")
 }

 // check if the configUpdate is in the correct format: base64 encoded
proto/common.ConfigUpdate

 update, err := base64.StdEncoding.DecodeString(args[0])
 if err != nil {
 return shim.Error(fmt.Sprintf("error happened decoding the configUpdate base64 string:
%v", err))
 }

 if err := proto.Unmarshal(update, &common.ConfigUpdate{}); err != nil {
 return shim.Error(fmt.Sprintf("error happened decoding common.ConfigUpdate: %v", err))
 }

 // create and store the proposal
 proposalID := getProposalID()

 proposal := Proposal{

 ConfigUpdate: args[0],
 Description: args[1],
 }

 propsosalJSON, err := json.Marshal(proposal)

 if err != nil {
 return shim.Error("error happened marshalling the new proposal: " + err.Error())
 }

 if err := stub.PutState(string(proposalID), propsosalJSON); err != nil {
 return shim.Error("error happened persisting the new proposal on the ledger: " +
err.Error())

 }

 if err = stub.SetEvent(NewProposalEvent, []byte(proposalID)); err != nil {
 return shim.Error("error happened emitting event: " + err.Error())
 }

 return shim.Success([]byte(fmt.Sprintf("{\"proposal_id\":\"%v\"}", proposalID)))
}

func (mcc *ManagementChaincode) addSignature(stub shim.ChaincodeStubInterface, args
[]string) pb.Response {
 if len(args) != 2 {
 return shim.Error("incorrect number of arguments - expecting 2: proposalID, signature")
 }

 proposalID := args[0]
 signature := args[1]

 // check if the signature is in the correct format: base64 encoded
proto/common.ConfigSignature

 sig, err := base64.StdEncoding.DecodeString(signature)

 if err != nil {
 return shim.Error(fmt.Sprintf("error happened decoding the signature base64 string:
%v", err))
 }

 if err := proto.Unmarshal(sig, &common.ConfigSignature{}); err != nil {
 return shim.Error(fmt.Sprintf("error happened decoding common.ConfigSignature: %v",
err))

 }

 creator, err := stub.GetCreator()

 if err != nil {
 return shim.Error("error happened reading the transaction creator: " + err.Error())
 }

 mspID, err := getMSPID(creator)

 if err != nil {
 return shim.Error(err.Error())
 }

 // fetch and update the state of the proposal
 proposalJSON, err := stub.GetState(proposalID)

 if err != nil {
 return shim.Error(fmt.Sprintf("error happened reading proposal with id (%s) to update
signature: %v", proposalID, err))
 }

 if len(proposalJSON) == 0 {
 return shim.Error(fmt.Sprintf("proposal with id (%s) not found", proposalID))

 }

 proposal := &Proposal{}

 if err := json.Unmarshal(proposalJSON, proposal); err != nil {
 return shim.Error("error happened unmarshalling the proposal JSON representation to
struct: " + err.Error())
 }

 if proposal.Signatures == nil {
 proposal.Signatures = make(map[string]string)
 }

 proposal.Signatures[mspID] = signature

 // store the updated proposal
 proposalJSONUpdated, err := json.Marshal(proposal)

 if err != nil {
 return shim.Error("error happened marshalling the updated proposal: " + err.Error())
 }

 if err := stub.PutState(proposalID, proposalJSONUpdated); err != nil {
 return shim.Error("error happened persisting the updated proposal on the ledger: " +
err.Error())

 }

 if err = stub.SetEvent(NewSignatureEvent, []byte(proposalID)); err != nil {
 return shim.Error("error happened emitting event: " + err.Error())
 }

 return shim.Success(nil)
}

func (mcc *ManagementChaincode) getProposals(stub shim.ChaincodeStubInterface, args
[]string) pb.Response {
 if len(args) != 0 {
 return shim.Error("incorrect number of arguments - expecting 0")
 }

 proposals := make(map[string]*Proposal)
 proposalIterator, err := stub.GetStateByRange("", "")
 if err != nil {
 return shim.Error("error happened reading keys from ledger: " + err.Error())
 }

 defer proposalIterator.Close()

 for proposalIterator.HasNext() {
 proposalJSON, err := proposalIterator.Next()

 if err != nil {
 return shim.Error("error happened iterating over available proposals: " +
err.Error())

 }

 proposal := &Proposal{}

 if err = json.Unmarshal(proposalJSON.Value, proposal); err != nil {
 return shim.Error("error happened unmarshalling a proposal JSON representation to
struct: " + err.Error())
 }

 proposals[proposalJSON.Key] = proposal

 }

 proposalsJSON, err := json.Marshal(proposals)

 if err != nil {
 return shim.Error("error happened marshalling the update proposals: " + err.Error())
 }

 return shim.Success(proposalsJSON)
}

func (mcc *ManagementChaincode) getProposal(stub shim.ChaincodeStubInterface, args []string)
pb.Response {
 if len(args) != 1 {
 return shim.Error("incorrect number of arguments - expecting 1: proposalID")
 }

 proposalID := args[0]
 proposalJSON, err := stub.GetState(proposalID)

 if err != nil {
 return shim.Error(fmt.Sprintf("error happened reading proposal with id (%v): %v",
proposalID, err))

 }

 if len(proposalJSON) == 0 {
 return shim.Error(fmt.Sprintf("proposal with id (%s) not found", proposalID))
 }

 return shim.Success(proposalJSON)
}

func getProposalID() string {
 bytes := make([]byte, ProposalIDLength)
 for i := range bytes {
 bytes[i] = alphanum[rand.Int()%len(alphanum)]
 }

 return string(bytes)
}

func getMSPID(creator []byte) (string, error) {
 identity := &msp.SerializedIdentity{}

 if err := proto.Unmarshal(creator, identity); err != nil {
 return "", fmt.Errorf("error happened unmarshalling the creator: %v", err)
 }

 return identity.Mspid, nil
}

