<&~ FIREFLY

Q
r i
2 o L8
@ 5 3
Q.. 5 B=
+— U S =
= ® > 8
: L = N oz
- O = oo 5
:: - QO Q A E
> < N Wl =g

<§~ FIREFLY

Multi-party business process flow

Party 1

Agreed
sequence

Party 2

Party 3

<6~ FIREFLY

Bob's Sequence Sally's Sequence

2

Agreed sequence

000G

<6~ FIREFLY

FIREFLY
FireFly Multi-Party i

Event Sequencing

L I I

1. Transaction submission

An individual Firefly instance

be globally sequenced with messages
submitted by other members of the
network.

Member 1
App

DB/
Blobstore

Member 1 Firefly Node

M~

IPFS /

Messaging/

4. Events are processed
consistently by all parties

All firefly runtimes see every
event that they are subscribed to,
in the same sequence.

The submitter must also apply the
Jogic only in the sequence ordered

]
1 2. Blockchain locks in the order
1

1

1 All member Firefly runtimes see every

: transaction, in the same sequence.

1

1

1 This includes when transactions are being
: submitted by both sides concurrently.

Member 2
App

preserves the order that it received Green by the blockchain. It cannot assume Blue
messages from application instances. the order, just because it was the A queue of events is maintained for
member who submitted it. each matching app subscription.
Where possible, batching is used to
roll-up 100s of transactions into a . v The public/private data payloads
) .) Firefly Core :
single blockchain transaction. travel separately to the blockchain,
_ Firefly Core and arrive at different times. Firefly
Blockchain alfows these messages to~ * | A\ Bt ey Red | e assembles these together before

\y/
DB/
Blobstore

Member 2 Firefly Node

N~

IPFS /

Messaging

3. Firefly assembles the complete
original message in a queue

delivery.

If data associated with a blockchain
transaction is late, or does not arrive,
all messages on the same "context"
will be blocked.

It is good practice to send messages
that don't need to processed in order,
with different "context" fields. For
example use the ID of your business
transaction, or other fong-running

1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
process / customer identifier. [
1
1

FireFly Internal Event ~&~ FIREFLY

PCST broadcast/send

R Sequencing Model
(for active/active HA)

{

o
data: [...]
¥

Sequencers are long-running
leader-elected jobs fistening
to the database (via event

tables in SQL etc.) m

App Local Batch
Node Type Tag Topic Group Batch/TX Fields { R . .
Instance Sequence B d \"g:ssa::g‘ez?u j | Public
h roaacast data: [...] Storage (IPFS)
91190 MyNode Broadcast T 1 - Batch1)
.\ .» Bach ;
2. App gets ack once its in local 91191 MyNode Broadcast T2 a Batch2> p Batch pin:
messages table. ’ rocessor i "bcde2345",
91192 MyNode Broadcast T c1 payl oadRef : "xyz"
201 Accepted
91193 MyNode Private T 1
header: {
e?d‘sr"abchS?.”",) Update DB .
topic: ["CL'], 91194 MyNode Private T1 2 G1 Blockchain
type: "broadcast",
txtype: "batch_pin"
3)
data: [91195 Member2Node | Private T2 2 G1
}
91196 Member3Node | Broadcast T2 cl Private
91197 MyNode Private 1 a1 G2 Batch Baiched » Data Exchange
91198 Member3Node | Broadcast T3 C1 Processor
Public

Storage (IPFS)

Created with leadership election when Websocket

connection made from an app into Firefly.

Extensible to other dispatchers (AMQP etc.)
Data Exchange

Local Responsible for filtering and delivering b
" Sub1
Type Reference batches of events to the active event
St
equence dispatchers. Records the latest offset Eve nt Ap p
1 confirmed by each dispatcher. H
Blockchain l b d 83282 message_confirmed | abcd1234 Y p: D|spatcher Insta nce
nooun 83283 message_confirmed | bcd23456 S u b sc ri tl on Leader elected
Data 83284 fi d | defg3456 p
message_confirme efg
A Manager
ggregator
83285 message_confirmed | ghij4567
Local Batch/ Dis- Leader elected . d | hik
83286 message_confirme ijk5678

Sequence Index patched? Triggered each time an event 6e-) Event Ap p

. is detected by the associated
247891 fghi3456/1 | false R . Deliberately lightweight persisted object, that records a Sub2 .

lugin. It is the responsibilit !
P8 . X P Y significant network event. Just records the local sequence of DlspatCher I nSta nce

. of the plugin to fire events L

247892 fghi3456/2 false sequentially. No problem if that event within the local node. Type Name Offset
9 v P In this case we're focussed on the most important event type yp Leader elected

. they are workload managed N X

247893 fghi3456/3 false between Firefly instances, as - when a message clicks into confirmed. However, a the o
Y - events table can have lots of more granular events. subscription sub1 83282
n long as they are sequential.
247894 hijk4567/1 false
subscription sub2 83286

247895 hijk4567/2 false

* leadership election is work in progress as of Jul 2021

J Datatype (0ptional) | _ e e e
BLOB Data :
Context G : h
ontex | roup))) ' Has
Group + Topic Members + Ledger Receiver 1 Receiver 2 Receiver 3 E Only
On-chain data to allow global ordering
Group Init Context Message Batch Message Batch Message Batch
Off-chain1 Off-chain 2 Off-chain 4 Off-chain 3
Context=CID - Context=CID - Context=CID - Context=CID
Batch=BID1 - Batch=BID2 - Batch=BID4 - Batch=BID3
Sender=NID1 - Sender=NID1 - Sender=NID1 - Sender=NID2
Members=NID1,NID2,NID3 - Nonce=1 - Nonce=2 - Nonce=1
[[
On-chain 1 On-chain 2 On-chain 3 On-chain 4
Hash=H(CID+NID1+0) Hash=H(CID+NID1+1) Hash=H(CID+NID2+0) Hash=H(CID+NID3+2)
BatchID=BID1 BatchID=BID2 BatchID=BID3 BatchlD=BID4
I I I I
Next hashes 1 Next hashes 2 Next hashes 3 Next hashes 4
NID1=H(CID+NID1+1) NID1=H(CID+NID1+2) NID1=H(CID+NID1+2) NID1=H(CID+NID1+3)
NID2=H(CID+NID2+0) NID2=H(CID+NID2+0) NID2=H(CID+NID2+1) NID2=H(CID+NID2+1)
NID3=H(CID+NID3+0) NID3=H(CID+NID3+0) NID3=H(CID+NID3+0) NID3=H(CID+NID3+0)

Ledger

Off-chain / on-chain private sequenced transfer coordination

Message
Topics + Tags

SON Data

Members

Transaction
Anonymized /
with identity

Off-chain transfers
Arrival could be
delayed, and occur in
any order

Off-chain state
To know if next
message is applicable,
and can be processed

Notes:

On-chain

Arrival order is
deterministically
sequenced

A new shared CID is established
as an ordering context between
three nodes (also salts the hash
- only ever in clear text offchain).

We accept the next message
batch in the sequence, because
the hash matches the expected
next hash of the sender.

Must maintain separate nonces
for each sender, to avoid
leaking the CID to the chain (by
calculating a nonce on-chain)

We have to maintain a "parked"
list of all on-chain messages we
ignored, because arrival of an
off-chain batch unblocks them

<§~ FIREFLY

<&~ FIREFLY

10N

ISCUSS
Community Call 7t July 2021

Open
Di

