
Hyperledger
Mentorship Project

Presentation
November 2021

Kiv Chen

Hyperledger Fabric Python SDK

› Introduction

› Name: Kiv Chen

› Location: Liverpool, United Kingdom

› University: University of Liverpool

›Mentor(s): Dixing Xu, Baohua Yang, Guillaume Cisco, Wang Dong

› Hyperledger Project: Support Decentralized Governance for Smart Contracts in
Fabric Python SDK

Hyperledger Fabric Python SDK

Project Description: With the introduction of Fabric v2.x, a more decentralized way of

chaincode management is implemented. There are several improvements over the

previous lifecycle and it requires several changes on the sdk. This project aims to

support decentralized governance for smart contracts in fabric python sdk and add

features such as private data sharing/verifying and external chaincode launcher. The

projects will provide a user-friendly and easy-to-use tool for fabric developers and

operators.

Hyperledger Fabric Python SDK

›Project Objectives:

›Obj 1: Chaincode lifecycle management on sdk-py

›Obj 2: Align with new features of fabric 2.x

›Obj 3: Documentation on using fabric 2.x

Hyperledger Fabric Python SDK

›Project Deliverables:

› Deliverable 1: Development of fabric 2.2+ Lifecycle 2.0 full support

› Deliverable 2: Documentation for fabric 2.2+ features

Hyperledger Fabric Python SDK

›Project Execution & Accomplishments:

› Get familiar with Fabric & Fabric SDK

› Fulfill and extend the decentralized support for Fabric 2.x

› Revise some previous APIs according to mentor’s suggestions

Hyperledger Fabric Python SDK

› Chaincode Lifecycle Step 1 Setup
○ Setup needed attributes ...

■ Name/Version
■ Sequence
■ Endorsement Policy
■ Validation configuration

○ … that influence the Fabric
 “citizens”
■ Client and Peers
■ Channels
■ Chaincode

Hyperledger Fabric Python SDK

› Chaincode Lifecycle Step 2 Package
○ Build a tar file from the source code files and metadata files
○ Available to be sent to other organizations

Hyperledger Fabric Python SDK

› Chaincode Lifecycle Step 3 Install
○ Send the packaged code to a peer
○ Save the hash value returned

Hyperledger Fabric Python SDK

› Chaincode Lifecycle Step 4 Approve for Organization
○ Send a “approve chaincode definition for organization” chaincode lifecycle

transaction to one peer in our organization
○ Commit the transaction

(send to orderer)

Hyperledger Fabric Python SDK

› Chaincode Lifecycle Step 5 Commit
○ Send a “commit definition chaincode for channel” chaincode lifecycle

transaction to enough organizations
○ Commit the transaction

(send to orderer)

Hyperledger Fabric Python SDK

› Chaincode Lifecycle Step 6 Init

○ Invoke the chaincode

Hyperledger Fabric Python SDK

Hyperledger Fabric Python SDK

Hyperledger Fabric Python SDK

›Recommendations for future work:

› Add more chaincode examples

› More detailed documentation

› Track and support latest features of Fabric

Hyperledger Fabric Python SDK

›Project Output or Results:
› Code Available at:

https://github.com/hyperledger/fabric-sdk-py

› Project Link:

https://wiki.hyperledger.org/display/INTERN/Support+Decentralized+Governance+fo

r+Smart+Contracts+in+Fabric+Python+SDK

https://github.com/hyperledger/fabric-sdk-py
https://wiki.hyperledger.org/display/INTERN/Support+Decentralized+Governance+for+Smart+Contracts+in+Fabric+Python+SDK
https://wiki.hyperledger.org/display/INTERN/Support+Decentralized+Governance+for+Smart+Contracts+in+Fabric+Python+SDK

Hyperledger Fabric Python SDK

› Insights Gained:

› Communication

○ Managing feedbacks, deliveries and expectations

› Programming Skills

○ The thing about and not about the written code

› Take Aways:

› Documentation is important!

› The open-source workflow and paradigm

THANK YOU!

