Hyperledger
Mentorship Project
Presentation

November 2021



Solang Compiler Passes

> Introduction
> Name: Lucas Steuernagel
> Location: Joinville, Brazil
> University: Aeronautics Institute of Technology - Sao José dos Campos, Brazil
> Mentor(s): Sean Young
> Hyperledger Project. Solang Solidity Compiler




Solang Compiler Passes

> Project Description:
o0 Solang is a Solidity compiler that uses LLVM as the backend.
O It is written in Rust.
o It allows for many optimizations, considering the context of the Solidity
_anguage.
o Apply compiler’s theory to optimize the intermediate representation of
Solidity contracts.

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE



Solang Compiler Passes

> Project Objectives: function passes(int a, int b) public
. t int
> Obj |: Detect and remove unused FERUINS ()
X int x = a*b-5;
variables. int p;
> Obj 2: Raise warnings for undefined if (x > 0) {
: = a*b-19;
variables. L olea
>» Obj 3: Remove common subexpressions. p = a*b*a:

}
int32 v = int32(x-3)-p;
return x+a*b;

HYPERLEDGER ©

— B HNOLOGIES FOR B




Solang Compiler Passes

> Project Deliverables: function passes(int a, int b) public

» Code deliverables: returns (int) {
> Deliverable 1: Unused variable detection and int x = a*b-5;
warnings. int p;
> Deliverable 2: Unused variable elimination. it (x - Sib:g-
> Deliverable 3: Undefined variable warning. ) else_{ '
> Deliverable 4: Available expressions analysis. p = a*b*a;
> Deliverable 5: Common subexpression ;

int32 v = int32(x-3)-p;
return x+a*b;

elimination.
y Documentation deliverables:

> Deliverable 1. Write documentation about the
optimization passes at Solang docs.

HYPERLEDGER o

EEEEEEEEEEEEEEE OGIES FOR BUSINESS



Solang Compiler Passes

> Project Execution & Accomplishments:
» Deliverables:

o All deliverables have been completed (& .

> Challenges:

o There were so many edge cases for each implementation.
o All cases should be extensively considered in a compiler.

> Proud of:

o Common subexpression elimination is a really complex compiler
optimization to design and implement.

HYPERLEDGER

~ ==/ BLOCKCHAIN TECHNOLOGIES FOR BUSINESS



Solang Compiler Passes

> Recommendations for future work:
O Solang’s existing optimization analysis implementation should be improved:
B We couldn’t detect the usage of storage variables.

m Common subexperession elimination does not work for storage
variables.

O Solang has complex instructions that should be broken down.

> Continued involvement:
o0 Make contributions during free time.
o0 Create an article containing a detailed design of implementation.

HYPERLEDGER o

~ ==/ BLOCKCHAIN TECHNOLOGIES FOR BUSINESS




Solang Compiler Passes

> Project Output or Results:
o Links:
m Pull requests
m Solang docs
m Hyperledger wiki
o Medium article: coming soon

/"y HYPERLEDGER

/"= BLOCKCHAIN TECHNOLOGIES FOR BUSINESS


https://github.com/hyperledger-labs/solang/commits?author=LucasSte
https://solang.readthedocs.io/en/latest/
https://wiki.hyperledger.org/display/INTERN/Project+plan+-+Solang+compiler+passes+2021

Solang Compiler Passes

Generated warning
> Basic demo:

warning: local variable 'v' has been assigned,
never read
Input function Line 8:
int32(x-3);
function passes(int a, int b) public

returns (int) { Soland’s | di .
int x = a*b=5: olang’s intermediate representation

if (x > 0) {
X = a*b-19; ty:int256 %a = (arg #0)
} ty:int256 %b (arg #1)
uint32 v = uint32(x-3); ty:int256 %1.cse_temp = ((arg #0) * (arg #1))
return x+a*b: ty:int256 %x = (%1.cse_temp - int256 5)
branchcond (%x > int256 @), block1, block2
block1:
ty:int256 %x = (%1.cse_temp - int256 19)
branch block?2
block2:
return (%x + %1.cse_temp)

A\ N\

. -HYPERLEDGER —F— 0§

BLOCKCHAIN TECHNOLOGIES FOR BUSINESS




Solang Compiler passes

> Insights Gained:
o Better knowledge of compiler optimizations.
o Open source code can impact many other projects: your contribution is truly
impactful.

> Advices for new mentees:
o Make a project plan.
o Talk to your mentors early.
o Get to know code styles and available tools beforehand to avoid back-and-forths
during PR review.

== BLOCKCHAIN TECHNOLOGIES FOR BUSINESS



THANK YOU!



