
Hyperledger
Mentorship Project

Presentation
November 2021

Solang Compiler Passes

› Introduction
›Name: Lucas Steuernagel

› Location: Joinville, Brazil

›University: Aeronautics Institute of Technology - São José dos Campos, Brazil

›Mentor(s): Sean Young

›Hyperledger Project: Solang Solidity Compiler

Solang Compiler Passes

›Project Description:
○ Solang is a Solidity compiler that uses LLVM as the backend.
○ It is written in Rust.
○ It allows for many optimizations, considering the context of the Solidity

Language.
○ Apply compiler’s theory to optimize the intermediate representation of

Solidity contracts.

Solang Compiler Passes

›Project Objectives:
›Obj 1: Detect and remove unused
variables.
›Obj 2: Raise warnings for undefined
variables.
›Obj 3: Remove common subexpressions.

function passes(int a, int b) public
returns (int) {
 int x = a*b-5;
 int p;
 if (x > 0) {
 x = a*b-19;
 } else {
 p = a*b*a;
 }
 int32 v = int32(x-3)-p;
 return x+a*b;
}

Solang Compiler Passes

›Project Deliverables:
› Code deliverables:

› Deliverable 1: Unused variable detection and
warnings.

› Deliverable 2: Unused variable elimination.
› Deliverable 3: Undefined variable warning.
› Deliverable 4: Available expressions analysis.
› Deliverable 5: Common subexpression

elimination.
› Documentation deliverables:

› Deliverable 1: Write documentation about the
optimization passes at Solang docs.

function passes(int a, int b) public
returns (int) {
 int x = a*b-5;
 int p;
 if (x > 0) {
 x = a*b-19;
 } else {
 p = a*b*a;
 }
 int32 v = int32(x-3)-p;
 return x+a*b;
}

Solang Compiler Passes

›Project Execution & Accomplishments:
› Deliverables:
○ All deliverables have been completed 😀.

› Challenges:
○ There were so many edge cases for each implementation.
○ All cases should be extensively considered in a compiler.

› Proud of:
○ Common subexpression elimination is a really complex compiler

optimization to design and implement.

Solang Compiler Passes

›Recommendations for future work:
○ Solang’s existing optimization analysis implementation should be improved:

■ We couldn’t detect the usage of storage variables.
■ Common subexperession elimination does not work for storage

variables.
○ Solang has complex instructions that should be broken down.

› Continued involvement:
○ Make contributions during free time.
○ Create an article containing a detailed design of implementation.

Solang Compiler Passes
›Project Output or Results:

○ Links:
■ Pull requests
■ Solang docs
■ Hyperledger wiki

○ Medium article: coming soon

https://github.com/hyperledger-labs/solang/commits?author=LucasSte
https://solang.readthedocs.io/en/latest/
https://wiki.hyperledger.org/display/INTERN/Project+plan+-+Solang+compiler+passes+2021

Solang Compiler Passes
›Basic demo:

function passes(int a, int b) public
returns (int) {
 int x = a*b-5;
 if (x > 0) {
 x = a*b-19;
 }
 uint32 v = uint32(x-3);
 return x+a*b;
}

block0:
ty:int256 %a = (arg #0)
ty:int256 %b = (arg #1)
ty:int256 %1.cse_temp = ((arg #0) * (arg #1))
ty:int256 %x = (%1.cse_temp - int256 5)
branchcond (%x > int256 0), block1, block2

block1:
ty:int256 %x = (%1.cse_temp - int256 19)
branch block2

block2:
return (%x + %1.cse_temp)

warning: local variable 'v' has been assigned, but
never read
Line 8:

int32 v = int32(x-3);
------^

Input function

Generated warning

Solang’s intermediate representation

Solang Compiler passes

› Insights Gained:
○ Better knowledge of compiler optimizations.
○ Open source code can impact many other projects: your contribution is truly

impactful.

› Advices for new mentees:
○ Make a project plan.
○ Talk to your mentors early.
○ Get to know code styles and available tools beforehand to avoid back-and-forths

during PR review.

THANK YOU!

