
Nicole Khor, Anonyome Labs

Applying Decentralised Identity
Techniques to Web Authentication

December 2020

Motivation
• To implement a solution that allows decentralised identity (or SSI) to
authenticate with a wider range of services

• Leverage Web Authentication (WebAuthn) due to its existing support in
industry

• Create a hybrid approach to SSI based password-less logins

• ‘Plugs’ into existing services

WebAuthn
• The official password-less authentication standard for ”strong, attested, and
scoped public key based credentials” [1].

• Allows for the authentication of users into enabled services

• A component of the Fast Identity Online 2 (FIDO2) project

• By the Fast Identity Online (FIDO) Alliance and the World Wide Web Consortium
(W3C)

[1] D. Balfanz, A. Czeskis, J. Hodges, J. Jones, M. B. Jones, A. Kumar, R. Lindemann, and E. Lundberg, “Web authentication: An api for accessing public key credentials.” https://www.w3.org/TR/webauthn-2/, 2019

FIDO2 Overall
WebAuthn and Client to Authenticator Protocol (CTAP)

[2] Yubico, “Fido2/webauthn overview.” https://developers.yubico.com/WebAuthn/ WebAuthn Developer Guide/Overview.html, 2020

[2]

Integrated SSI into WebAuthn
• iOS client in Swift

• Python based relying party from Duo Labs

Registration Ceremony

[2] Yubico, “Fido2/webauthn overview.” https://developers.yubico.com/WebAuthn/ WebAuthn Developer Guide/Overview.html, 2020

[2]

• Registering an identity

• Providing the credential identifier, public key and attesting the authenticator

Authentication Ceremony

[2] Yubico, “Fido2/webauthn overview.” https://developers.yubico.com/WebAuthn/ WebAuthn Developer Guide/Overview.html, 2020

[2]

• Signing a challenge using previously given public key

Execution of Work

Python Test Server
Web UI

Console

Client Application
Tab View

Wallet Modules

Receiving the Credential Options

Web Inspector console

Building the Attestation Response
Creating the signature

Output from listing DIDs

• No signature method in Hyperledger Indy

• Signatures created with Apple’s key system - ‘SecKey’

• Required a representation of the private key

Building the Attestation Response
Creating the signature

• ‘SecKeyCreateWithData’ created a ‘SecKey’ from an external representation

• ‘bufferAsData’ must be in ANSI X9.63 format, or 04 || X || Y || K

Routine to create a ‘SecKey’ from an existing key

Guessing X, Y and K for ANSI X9.63
• Elliptic Curve Cryptography:

• Private key = k value with which the generator point, G, is multiplied

• Public key = (X, Y) coordinate in the subgroup of G = k × G

• X, Y = entire public key

• K = first 32 bytes of the private key

•

Failed ‘SecKey’

Successful SecKey
• X, Y = entire private key

• K = first 32 bytes of the private key again

•

Successful ‘SecKey’

Cryptographic Incompatibility

Cryptography systems between modules

Sending the Attestation Response

Web Inspector console

Registration Verification

• Rejects at verifying signature

• ‘Unsupported algorithm’

• If self-attestation is accepted, no other relevant checks

Possible Future Alternatives
• Implement signatures for Ed25519 keys in Hyperledger Indy

• Avoids exposing private key

• Avoids Apple intermediary

• Implement a different curve in Hyperledger Indy

• Use Hyperledger Ursa as cryptographic back end

• Consider other Apple and WebAuthn server libraries

Registration Response
server

sent to

[2]
[2] Yubico, “Fido2/webauthn overview.” https://developers.yubico.com/WebAuthn/ WebAuthn Developer Guide/Overview.html, 2020

Authentication Response
server

sent to

[2]
[2] Yubico, “Fido2/webauthn overview.” https://developers.yubico.com/WebAuthn/ WebAuthn Developer Guide/Overview.html, 2020

Client and Server Communication via Script Injection

Interesting SSI Decisions

• Borrowing another device’s AAGUID

• Indy wallet does not have an AAGUID

• Could be anti-fingerprinting

•WebAuthn DID provisioning

• One DID for all WebAuthn services vs. one DID per service

