
Introduction of Hyperledger CACTUS

CACTUS core contributors
January 2021

Hyperledger Modular Approach

YOU ARE
HERE

Working with “A World of Many Networks”

HealthcareFinancial Services Supply Chain

K
E

E
P O

U
T K

E
E

P O
U

T K
E

E
P O

U
T

K
E

E
P O

U
T K

E
E

P O
U

T K
E

E
P O

U
T

Financial Services Healthcare

TR
AD

E TRADE

Maximum
Possible

Pluggability and
Generality

we want to be able
to plug and play
components as

much as possible.

No Middlemen
Whenever
Possible

we don’t want to
have to go through

(and trust!) an
intermediate

blockchain if we
don’t have to do so.

No Token
Required

we do not want
users to have to
use tokens for
transactions.

No Mandatory
Toll Booth

we don’t want to
require operators
to make money

by taking a cut of
individual

transactions.

Core principles for ‘interoperability’

Consistent transaction
across multiple ledges

Support for transactions
between permissioned

and permission-less
ledgers.

Propose, approve first,
then executes

Protocol ensures prior
consent from exchanging

parties to avoid
unexpected behaviors.

Validation of
transactions

Validator node
checks whether each

transaction is
acceptable, and taking

part to
local governance

CACTUS Features

Each Ledger is
abstracted as

Validator
(for BC platforms)

CACTUS application
(examples are given)

Consortium
management
mechanism

CACTUS Architecture

Achievements (as of v0.3)
– Ledger Plugins (more DLTs are coming soon)

○ Fabic
○ Besu
○ Go-Ethereum
○ Quorum

– Example applications
○ Car Trade
○ Supply Chain Management

User

2. Remittance

3. Transfer of the right of use1. Request for Trading

5. Receiving
 Transaction Results

Blockchain for
private coin

Blockchain for
Controlling the
right to use the car

4. Remittance

owner of the car
User

User

Car Trade example (escrow trade across DLTs)

Language Agnostic Plugin Development

• You can write Cactus plugins in any language!
• Fine print: Pull request adding this is pending approval as of 2021-01-13

<<OpenAPI Spec>>
<<OpenAPI Generator>>

rust client code
(optional here)

Rust server code

Typescript client code

<<OS_Process_Rust>>

<<OS_Process_NodeJS>>

Network
(HTTP)

Plugin Example - Keychain

•The interface is meant to be really simple:

export interface IPluginKeychain extends ICactusPlugin {

 getKeychainId(): string;

 has(key: string): Promise<boolean>;

 get<T>(key: string): Promise<T>;

 set<T>(key: string, value: T): Promise<void>;

 delete<T>(key: string): Promise<void>;

}

•Store secrets that other plugins can retrieve
•Once we have identity/RBAC it will integrate with that too

Plugin Example - Keychain

<<ledger>>

<<plugin-keychain>>
<<secret store>>

<<cactus-api-server>>

<<plugin-ledger>>

<<human>>

Let’s get there faster together!

We want to realize the value of ledger interoperability in
production ASAP, seeking contributors especially in the
following areas:

1.Fabric v2/Corda Ledger plugins
2.HTLC contracts for cross-ledger atomic swaps
3.Transaction protocol implementation

Please join us!
– CACTUS project home page
https://wiki.hyperledger.org/display/cactus/Hyperledger+Cactus+Home

White paper URL: https://github.com/hyperledger/cactus/blob/master/whitepaper/whitepaper.md

https://github.com/hyperledger/cactus/blob/master/whitepaper/whitepaper.md

Any Questions ?

