
Modular Data Model for Iroha v1.x

Intro

Data Model
A data model (further referred to as DM) is a business model abstraction. It may provide
interfaces to execute some commands and query some state. A DM implementation is a module
that can be attached to an Iroha node. In that case, the set of commands delivered to a DM
module is strictly determined by the ledger, which enables to build extensible blockchain
applications.

Iroha 1
Recently we had an experience of integrating HL Burrow into Iroha 1. It can also be seen as a
DM module, but it did not achieve enough level of abstraction that could be used for any other
DM module. In this document we want to design a more universal concept of integrating any
DMs into Iroha with a uniform and simple process.

Client API
We exploit the transparent extensibility of protobuf messages: a message can be parsed
correctly with a subset of its fields. So, Iroha parses a subset related to the execution flow till the
data model, and DM parses the rest. Protobuf wire protocol does not contain any names, so we
only have to ensure that field numbers correspond to right data type and semantics.
This approach keeps Iroha agnostic of the semantics and contents of specific payloads, and
allows for seamless extensibility of both Iroha commands and queries and the DM module
payload.

DM module identifier:
Includes a unique name and a version string.

message DataModelId {

string name = 1;
string version = 2;

}

https://iroha.readthedocs.io/en/master/integrations/burrow.html

Command
New command type: CallModel

message CallModel {

message Payload {}
Payload payload = 1;
DataModelId dm_id = 2;

}

Query
New query type: QueryModel

message QueryModel {

message Payload {}
Payload payload = 1;
DataModelId dm_id = 2;

}
message QueryModelResponse {

message Payload {}
Payload payload = 1;

}

And a new endpoint:

rpc QueryModel (QueryModel) returns (stream QueryModelResponse);

For now we consider only streaming query API as unary queries are logically a particular case
of streaming and can be implemented later if needed for whatever reason.

Example
TicTacToe, a classical example

// -- common --
message Coordinates {

int32 x = 1;
int32 y = 2;

}

// -- commands --
message TicTacToeMakeMove {

Coordinates coordinates = 2;
}
message TicTacToeGiveUp {}

message TicTacToeCommand {

// extends CallModel
message Payload {

oneof command {
TicTacToeMakeMove = 1;
TicTacToeGiveUp = 2;

}
}
Payload payload = 1;
DataModelId dm_id = 2;

}

// -- queries --
message TicTacToeWatchUpdates {}
message TicTacToeGetBoard {}

message TicTacToeQuery {

// extends QueryModel
message Payload {

oneof query {
TicTacToeWatchUpdates = 1;
TicTacToeGetBoard = 2;

}
}
Payload payload = 1;
DataModelId dm_id = 1;

}

// -- query responses --
message TicTacToeMoveRecord {

String user = 1;
Coordinates coordinates = 2;

}
message TicTacToeBoard {

repeated TicTacToeMoveRecord = 1;
}

message TicTacToeQueryResponse {
// extends QueryModelResponse
message Payload {

oneof response {
TicTacToeMoveRecord = 1;
TicTacToeBoard = 2;

}
}
Payload payload = 1;

}

Note the “extends” comments in some messages. They are parsed by Iroha node by their
extended parent type, and passed to the right backend, which then parses it by the extender
type.

DM module API
Result is a structure that provides semantics of a variant of a void value or a string error. An
example can be seen in Iroha Burrow integration:
https://github.com/hyperledger/iroha/blob/847bc0b7cddf5709df509ffa156d89f4e0998856/irohad/
ametsuchi/impl/common_c_types.h#L28.

Command

Result execute(CallModel const&) apply the command

void revert_block() undo the effect of all execute commands since
last commit_block. // db transaction

void revert_transaction() undo the effect of all execute commands since
last start_transaction or commit_block,
whichever is most recent. // db savepoint

void commit_block() A savepoint for revert_block(),
revert_transaction() and queries

void start_transaction() A savepoint for revert_transaction()

void reset_state() Completely wipe out the state. Needed when
overwriting the ledger.

Query
Result query(QueryModel const&, QueryModelResponseWriter&) - perform the
query and write the results to the writer channel. Query is performed on the state as on last
commit_block(). This can be extended in the future to support queries for specific height as
the module knows about the blocks.

https://github.com/hyperledger/iroha/blob/847bc0b7cddf5709df509ffa156d89f4e0998856/irohad/ametsuchi/impl/common_c_types.h#L28
https://github.com/hyperledger/iroha/blob/847bc0b7cddf5709df509ffa156d89f4e0998856/irohad/ametsuchi/impl/common_c_types.h#L28

Module configuration
For the earlier stages of development of this feature, we can configure available modular
backends in configuration file. This means that runtime changes are not available.
A record of all configured modules seems required in the ledger, like a command in the settings
table. This will allow us to keep the ledger when modules are updated. When we face the need
to update a module version, we can also add a command to disable specific executor on the
ledger.
So the minimal basic workflow looks like this:

- Iroha is started
- It reads several modular DM initialization params from the config
- For each DM it:

- Initializes the DM
- Registers the DM in command and query executors

- Then it checks that the set of configured DMs matches exactly the set of enabled DMs in
the genesis block.

Pipeline

Command
The new command acts just like any other command till the command executor. Once the
command executor receives the new command, it parses the DM identifier of the command and
tries to find a matching executor. If found, it passes the reference to the original protobuf
message into the specific executor and gets a status back (success or failure). If the executor
was not found, an error is returned immediately.
Add a general permission for CallModule command.

Query
Seems straightforward. A new separate endpoint just passes the query to a DM module.
Add a general permission for QueryModule command.

Iroha internals

DM module registry
Manages the modules of DMs.
It is used by

- Command executor for executing CallModel commands
- Transaction executor for starting & reverting txs
- Consensus module for starting & reverting blocks
- Irohad::resetWsv() for clearing state

registerModule(...) Add a DM module with specific name & version

Result execute(CallModel const&) Call execute of specific DM if it is registered, or
return Error otherwise

void revert_block() Call revert_block() for each registered
module

void revert_transaction() Call revert_transaction() for each
registered module

void commit_block() Call commit_block() for each registered
module

void start_transaction() Call start_transaction() for each
registered module

void reset_state() Call reset_state() for each registered
module

