UNB()UND

Securing a Blockchain loT Ecosystem with MPC

Rebecca Aspler
Director, Product Management

Unbound Tech

UNB()UND

Prof. Yehuda Lindell CEO, Co-founder

Wikipedia

Prof. Nigel SmartCo-founder

Wikipedia

WHO WE ARE

Unbound delivers secure, scalable and agile cryptography designed for the digital business.

Developed by **world-renowned scientists** in the field of Multiparty Computation.

Built on **100 person-years** of cryptographic research and development experience.

Unbound Tech

UNB()UND

- Established in 2015
- Safeguarding Digital secrets we are eliminating risks (vs. mitigating risk approach)
- Solutions are based on revolutionary breakthroughs in cryptography -Multi-Party Computing (MPC)
- Working with Fortune 1000 enterprises

MAR 2015

FEB 2015

First official customer! Enterprise Key Management is purchased & installed by Talkspace.

MAR 2016

Enterprise Key Management is installed for the first time at a major global bank!

First investment from Innovation Endeavors! With that seed money, the company moves to its first official office space & begins its first round of hiring.

MAR 2017

AUG 2017

UNB()UND

JAN 2018

Series B Funding is complete! Innovation Endeavors as well as leading banks including Citi Ventures & Goldman Sachs all invest in the company.

MPC is recognized by Gartner as an emerging technology that can solve real-world encryption, authentication & privacy challenges. MPC has come a long way!

Dyadic rebrands as Unbound Tech — enabling trusted digital innovation so that previously out of reach digital services can now be built with unprecedented speed & scale.

MPC Based Authentication and Signing

Pure software approach

- Split the key into different random shares
- Place the random shares in different, highly segregated places (any hardware)
- Perform all cryptographic operations using key shares without ever bringing them together
- Shares are refreshed continuously

How does it work?

- MPC sub-field of cryptography since 1980s
- Allows multiple machines to jointly compute a function while keeping their inputs private
- Security guarantee mathematically proven
- Recent protocol optimizations enable commercial use

Security Challenges with IoT

What is the Need?

- From wearables to wind turbines, the application of sensors on the 'things' around is everywhere.
- With a projected 10 billion more devices coming online in the next 4 years and some 44ZB of data flowing from them, such an ecosystem and its data requires a secure and efficient way to approve and track the identities, interactions and transactions of every "thing" in the network.

IoT Attacks

UNB()UND

IoT Attacks

Geo Location and Physical Security

- · Device Capture
- Timing attacks & hardware exploitation
- · Node cloning
- Node Tampering
- Semi-invasive & invasive intrusion

Communication Technology & Topology

- Eavesdropping
- Node cloning/replication
- ID Spoofing
- Masquerading attack
- DoS attacks including collision attack, channel congestion attack, CSMA exploitation and PANId conflicts
- MITM attacks
- Selective forwarding, Sybil attack, wormhole and blackhole attack

Centralized or a Distributed Network

- Malware attacks
- · Storage attacks
- · Unauthorized data sharing
- Disclosure of private/sensitive data
- · Threats to user privacy
- · Data manipulation
- Dos (Hardware compromise and malfunction)

Network Segmentation

- DoS attacks
- Device compromise
- Un-authorized access to the network

Network Virtualization

- Unauthorized access to the network
- Unauthorized access to the devices (over IP)
- DoS attacks
- DDoS attacks based on IoT bots

Four Levels of Required Protection

Assumptions → Required Cryptography

- Most IoT devices don't have secure elements.
- Many IoT devices work on battery and/or have modest processing power.
- Standalone battery is expected to last for at 2+ years.

- Cryptography based security is expected to support "weak" IoT devices as well "secure" devices.
 - Obfuscation techniques are considered relatively weak.
 - Hence requiring strong algorithms ED25519/
 ECIES (based on ECDH and AES) and AES.
- Operations should include message signing and data decryption.

UNBOUND

IoT Blockchain
Use Cases

Public vs. Private IoT Ecosystems

Public vs. Private IoT Ecosystems

UNB()UND

B2B Solutions
Enterprise grade Security Solutions

Usually B2C Solutions
The consumer owns and holds the key

Smart Home Example

- Types of ecosystems:
 - In-house
 - In building
 - In complex
 - By manufacturer
 - By consumers
- Security Challenges:
 - Provisioning
 - Authentication
 - Data at rest
 - Data at transit
 - Transactions
- Examples of what could go wrong:
 - Safety (open door)
 - Privacy (data)
 - Energy (turn on and off)

Smart City Example

- Types of ecosystems:
 - In neighborhood
 - In area
 - In City
 - By function (traffic light # bus)
 - By manufacturer
 - By consumers
- Security Challenges:
 - Provisioning
 - Authentication
 - Data at rest
 - Data at transit
 - Transactions
- Examples of what could go wrong:
 - Safety (water pollution)
 - DoS (trains, buses, traffic lights)
 - Energy (turn on and off)
 - Privacy (residents' data)

Toyota - Distributed Ecosystem Example

UNB()UND

Source: Toyota

- Types of ecosystems:
 - Manufacturers
 - Service Suppliers
 - Dealers
 - Retailers
 - Consumers
- Security Challenges:
 - Provisioning
 - Authentication
 - Data at rest
 - Data at transit
 - Multi-Party Transactions
- Examples of what could go wrong:
 - Safety (taking control over a car / truck)
 - DoS (car/device isn't working)
 - Privacy (consumers' data)

UNBOUND

IoT Blockchain Security Current Status Quo

Authenticating IoT Devices – Current 'Tools'

User and PWD

One-Time Password (OTP)

Access Token

Certificate-Based Authentication

Hardware Token

Challenges with Current Authentication 'Tools' UNB () UND

Platform Dependent	Variety of IoT devicesManufactured by huge array of vendors
High TCO	 Dedicated teams, HW and SW tools to integrate keys into TPMs. This is costly, slow, and cumbersome (cars as an example)
Resource Constrained Devices	 Often, these are resource-constrained devices Or even brownfield equipment, that allow little, if any, hardware modification.
Not Secure	 Old fashioned authentication tools and application security rules are easy to hack.

MPC
Next Gen Security

MPC Based Authentication and Signing

Pure software approach

- Split the key into different random shares
- Place the random shares in different, highly segregated places (any hardware)
- Perform all cryptographic operations using key shares without ever bringing them together
- Shares are refreshed continuously

How does it work?

- MPC sub-field of cryptography since 1980s
- Allows multiple machines to jointly compute a function while keeping their inputs private
- Security guarantee mathematically proven
- Recent protocol optimizations enable commercial use

Smart Home Example

- Cryptographic keys are split to shares.
- Each pair requires two keys shares: one is stored on the end point and the other on a server / another client.
- Key Shares are continuously refreshed
- Key shares on end points are cryptographically bound to the specific device.

Mobile App Hack Gives Thieves Full Access to Tesla Model SNB()UND

Security vulnerability

- The Tesla mobile app authenticates used a secret key that had been stored locally by the phone's app.
- The authentication token had been stored in the app's sandbox folder → vulnerable to malware.

Smart Home Example – The MPC Way

- Keys are split between the car owner app and the vehicle
- Key shares as part of MFA: biometrics, PIN, OTP, password
- Prevent relay crime
- Full authentication of the deriver's identity

Home Door Example – The MPC Way

- Keys are split between the home's/ hotel's app and a server
- Key shares as part of MFA: biometrics (FR, fingerprint), PIN, password
- Full authentication of the owners' / guests' identity
- The blockchain could be of the hotel's rooms, the hotel's chain (Hilton for example), the apartments' complex etc.

Toyota Use Case – The MPC Way

Threat Model

Threat Model

- All protocol messages are encrypted using AES-GCM with a shared key and a unique counter to prevent replay.
- An attacker can neither learn any information about the message from the mobile phone or the device, nor tamper with any message sent.
- All shared encryption keys are different for every device, so even in the unlikely event that one device is compromised nothing can be learned on other devices.

- For devices that holds secure element/Trusted Execution Environment (TEE) the solution Utilizes this element to secure the key share on the device to prevent cloning.
- Refresh the all shares continuously (configurable per need). A cloned device will need to execute an operation before the legitimate device is authenticating and shares are refreshed.
- If the cloned device carries out an authentication before the legitimate device, the MPC solution-protocols will detect the clone attack and raise a flag.

UNBOUND

- Side-channel Attacks work by obtaining measurements from multiple operations using the same key (timing information, power consumption, electromagnetic leaks or even sound).
- The device holds a random share of the key and not the entire key.
- A sharing refresh takes place at every operation.

- The MPC solution requires a proof of work by any IoT device upon enrollment.
- The proof of work is slow, compared to the MPC verification that is very fast.

MPC Based Authentication and Signing

Pure software approach

- Split the key into different random shares
- Place the random shares in different, highly segregated places (any hardware)
- Perform all cryptographic operations using key shares without ever bringing them together
- Shares are refreshed continuously

How does it work?

- MPC sub-field of cryptography since 1980s
- Allows multiple machines to jointly compute a function while keeping their inputs private
- Security guarantee mathematically proven
- Recent protocol optimizations enable commercial use

UNB()UND

Securing a Blockchain loT Ecosystem with MPC

Rebecca Aspler
Director, Product Management

