

What we will cover in 30 minutes

ØBlockchain programs - Monolith program or a new way of programming?
ØCan your blockchain adapt by workload?
ØWhat would a Hyperledger stack look like today and tomorrow?
ØHow is Taekion using different projects to build out its application?
ØWhat is missing from Hyperledger that can help build a custom fitted

blockchain?
ØShould Hyperledger be the Apache.org for Blockchains or Fabric with

some add-ons?
ØThe future is bright for assembling an interchangeable stack of

components

https://www.theverge.com/2018/3/7/17091766/blockchain-bitcoin-ethereum-cryptocurrency-meaning

https://www.linkedin.com/pulse/blockchain-design-pattern-raghu-bala/

Blockchain Monolith Blown Up

Into parts that fit your
workload

WHAT DOES THE FUTURE OF BLOCKCHAIN HOLD?

In the pattern of software decomposed by
Microservices like components

User interface Business Logic Data interface Blockchain Database

Standard Monolithic Software

OR

Tomorrow blockchains will be
assembled from best of breed

parts that solve real world
problems, or revolutionize

industries

Think Facebook, Amazon,
Google, Twitter, Alibaba

NOT

Netscape, AOL, Prodigy, MSN,
Compuserve, eWorld

CONFIGURE BY WORKLOAD
Is one-size-fits-all good for Blockchains ?

Mass Market Product
Stringent

Consensus
i.e. confirming no cheating

for gaming

Private Network between
subsidiaries

Stringent
Consensus

i.e. Accounting settlement

Private Company
Stringent

Consensus
i.e. Secure Files

Private Networks between
companies
Stringent

Consensus
i.e. Supply Chains

Private Network Public Network

High
TPS

Low
TPS

Public Networks serving a
worldwide consumer

audience
Irrevocable
Transaction

i.e. Crypto currency coins

Public Network serving a
small group
Irrevocable
Consensus

i.e. Real Estate Titles

Private Network

SO WHAT ABOUT A HYPERLEDGER STACK?
Core Blockchains

What is missing?

Pluggable Consensus
ü PBFT
ü PoET
ü aBFT
ü Kafka Ordering
ü RAFT

ü POW
ü POS
ü POT
ü POA
ü Etc.

Smart Contract interface

Pluggable Encryption
ü Security Keys
ü Primitives
ü Etc.

Operational Apps
Shared Cryptography library

Blockchain As a Service

Ethereum Client Immutable identity

View into your BC

BC Performance

Interledger
translation

Off Chain TEE Compute

Identity Toolkit

Supply Chain Specific
But built with components

? ? ? ?

NEW COMPONENTS NEEDED FOR A COMPOSABLE CHAIN?

Network and connection
management Layer

Block Storage

Key Storage

Permissioning/
Authentication

Data Importing
“Oracles connection”

Façade for business Logic
More than REST API

Membership services

Block Archiving Governance

Token ManagementData ExportingOperational Dashboard
Part Cello + Caliper for the

business operator
Universal Wallet

HOW TAEKION USES SAWTOOTH AND THE AVAILABLE LIBRARIES?

• Sawtooth:
• Base of the Taekion Core platform.

• Each core app has its own Transaction Processor (transaction family).

• Transaction batches allow state to be manipulated across families atomically.

• Signing and permission facility is very powerful: per-entity access control.

• Pluggable consensus: different consensus for different use-cases.

TAEKION USE OF SAWTOOTH AND THE AVAILABLE LIBRARIES

• Transact:
• Transact is in Rust, with C APIs…we have been working on Go ports.

• Use Transact submission/management code where possible across apps.
• Ensures clean, standardized transaction handling code.

• Experimenting on how to add app client SDK.
• Build clean, native language libraries for apps.
• Working Go prototype for Sawtooth (shameless plug):

• https://github.com/taekion-org/sawtooth-client-sdk-go

https://github.com/taekion-org/sawtooth-client-sdk-go

• Ursa:
• Ursa has not reinvented any wheels, just made the wheel consistently round.

• Some clients have very specific cryptography requirements:
• Example: US Department of Defense (DoD)

• Real need for careful abstraction and separation of all crypto components.
• DoD has very specific requirements that are non-negotiable.

• Ursa is a great layer in which to do this abstraction.

TAEKION USE OF SAWTOOTH AND THE AVAILABLE LIBRARIES

WHAT IS NEEDED BY HYPERLEDGER TO SUCCEED AS THE PLACE
TO COME FOR COMPOSABLE PARTS

• (Really) Pluggable Consensus:
• Sawtooth and Fabric BOTH have ”pluggable” consensus.

• Not compatible with each other!

• Hyperledger needs a well-defined standard and interface for pluggable
consensus.

• Implementing a robust, correct version of a consensus algorithm is HARD!
• Imagine using the same well tested and debugged code across platforms.

WHAT IS NEEDED BY HYPERLEDGER TO SUCCEED AS THE
PLACE TO COME FOR COMPOSABLE PARTS

• Networking/Connection Management:
• Sawtooth uses ZMQ sockets

• Excellent library, but still too low-level.

• Need component that provides common communication schemes:
• Peering/discovery
• Gossip
• Reliable connection management

WHAT IS NEEDED BY HYPERLEDGER TO SUCCEED AS THE
PLACE TO COME FOR COMPOSABLE PARTS

• Block Storage:
• Blockchains assume replica of every block on every node.

• Not all use-cases need this!

• Block storage should be an abstraction.
• Decouple from validation/consensus.
• Allow for custom storage and replication strategies.
• Can get fancy: erasure coding, etc.

WHAT IS NEEDED BY HYPERLEDGER TO SUCCEED AS THE
PLACE TO COME FOR COMPOSABLE PARTS

• Key Storage:
• Solved problem, but no Hyperledger standard.

• Was very important to solve early for our DoD clients.

• Standalone, or integrated with Ursa.

WHAT IS NEEDED BY HYPERLEDGER TO SUCCEED AS THE
PLACE TO COME FOR COMPOSABLE PARTS

• Data Exporting:
• Very useful to keep an “image” of current blockchain state in a DBMS or other

store for complex queries.

• Sawtooth provides “state delta” API.
• Works very well over either ZMQ or REST.

• API should be standardized
• Apps which need to receive blockchain state shouldn’t have to reinvent the wheel.

WHY NOT THE CRYPTO COMMUNITY APPROACH?

Do you you need composable components when you have:
Layer 2, Layer 3, Side Chains, State Channels, Oracles etc. ?
These approaches emerged to solve different workloads that
monolithic chains could not on their own.
They require a blockchain to exit

The use of modular programming has advantages.
Function can be added and subtracted by workload

https://coincheckup.com/analysis/github

OPEN SOURCE IN BLOCKCHAINS – CAN HYPERLEDGER
AGGREGATE A BLOCKCHAIN COMPONENT COMMUNITY?

Fabric Ursa

Besu Caliper

Avalon

TransactIndy

The majority of top 100 blockchains no longer
Open Source their code or are dead projects Iroha

You don’t have to go far from
the top 100 coin listings to
get to zero development in
Open Source, much against the
Marketing of Blockchains

Hyperledger is the ONLY ACTIVE Open Source
Community with multiple Blockchain projects
including components that can be reused by
any chain.
Ethereum is active but tied to the single chain.

WITH ADDITIONAL FUNCTIONAL COMPONENTS
HYPERLEDGER BECOMES THE APACHE.ORG OF BLOCKCHAINS

IN OTHER WORDS: Should Hyperledger be the Apache.org for Blockchains or Fabric with some add-ons?

WHERE SHOULD HYPERLEDGER TECH GO IN
• Standardization should begin using Hyperledger Open Source as reference

applications
• More specialization in components – Separate projects around Consensus/Data

Storage/Transact/Ursa etc.
• General Purpose Blockchains fade away as their parts become interoperable.
• Private Chains abound, but the blockchain computational capabilities fade into

the overall fabric of enterprise workflow.
• Enterprises use Public Chains only for validation - not storage or full computations
• Storage of data goes off chain in order to enable lower cost for enterprises
• Number of these blockchain parts are assembled into new solutions - blockchain

components create new apps that change how work is done by workload.

This is where the real long term impact is made.

James Barry
CTO & Co-Founder
james@taekion.com

William Katsak
Chief Architect
bill@taekion.com

