
ar
X

iv
:1

90
9.

06
49

4v
1 

 [
cs

.D
B

] 
 1

4 
Se

p 
20

19

Transactional Smart Contracts in Blockchain Systems

Victor Zakhary
UC Santa Barbara

Santa Barbara, California
USA, 93106

victorzakhary@ucsb.edu

Divyakant Agrawal
UC Santa Barbara

Santa Barbara, California
USA, 93106

divyagrawal@ucsb.edu

Amr El Abbadi
UC Santa Barbara

Santa Barbara, California
USA, 93106

elabbadi@ucsb.edu

ABSTRACT

This paper presents TXSC, a framework that provides smart
contract developers with transaction primitives. These prim-
itives allow developers to write smart contracts without the
need to reason about the anomalies that can arise due to
concurrent smart contract function executions.

1. INTRODUCTION
Executing concurrent operations has been a long-term

challenge in the design of large software systems. With-
out careful usage of synchronization primitives [8], the con-
current execution of multiple procedures that access shared
variables can easily result in anomalous executions. Instead
of using synchronization primitives, that a programmer must
carefully program, database systems introduced the elegant
declarative notion of transactions [9]. Programs that may
be executed concurrently are each executed as a transaction,
and the database management system ensures that transac-
tion execution is isolated from each other and that the con-
current and interleaved execution of multiple transactions is
serializable, i.e., equivalent to a serial execution [4].

Recent interest in blockchains has resulted in its rapid
usage in diverse applications, and its evolution to support
complex concurrent executions. The original blockchain, as
proposed in Bitcoin [17], involved simple transactions, that
transfer some bitcoins from one end-user (typically Alice)
to another end-user (typically Bob). The original bitcoin
blockchain can be easily modelled as an abstract data type
representing a linked list of blocks of transactions. The ac-
cessed data is the cryptocurrency, bitcoins, and transactions
transfer part of the remaining, unused assets of Alice to Bob,
while keeping the rest with Alice (hence the term Unspent
Transaction Output, UTXO to refer to the assets belonging
to a client in Bitcoin). A miner adds a transaction to a
block if the assets consumed in the transaction are not dou-
ble spent in the same block and if the miner can validate
that the end-user does actually have these assets, i.e., the
UTXO actually belongs to the end-user issuing the transac-
tion. Finally, a miner adds a block to the blockchain if it
solves the Proof of Work (PoW) puzzle [17].

Ethereum [22] reintroduced the notion of smart contracts [21]
to blockchains. Smart contracts extend the simple abstract
data type notion of blockchain transactions to include com-
plex data type classes with end-user defined variables and
functions. When an end-user deploys a smart contract in
a blockchain, this deployment results in instantiating an
object instance of the smart contract class in the block-
chain [7,11]. The object state is initially stored in the block

where the object is instantiated. End-users can issue a smart
contract function call by sending function call requests to the
miners of a blockchain. These function calls are transactions
that are sent to the address of the smart contract object.
Miners execute these transactions and record object state
changes in their currently mined block. Therefore, the state
of a smart contract object could span one or more blocks of
a blockchain.

Smart contracts now have their own variables and mul-
tiple functions that may be executed by different end-users
results in transactions which might be incorporated in dif-
ferent blocks by different miners. This clearly results in
complex concurrency challenges which need to be handled
by smart contract developers. Distributed database litera-
ture [6,20] has shown that putting the burden of implement-
ing transaction logic in the application layer is problematic.
This is no simple task and serious smart contract concur-
rency bugs have been highlighted in the blockchain litera-
ture [7, 13, 15, 19]. In fact, from a financial point-of-view,
two such famous anomalies in the context of blockchains,
TheDAO [1,5] and the BlockKing [2] have resulted in a loss
of tens of millions of investors’ dollars [15].

In this paper, we advocate leveraging the traditional trans-
actional approach to address the concurrency violations in
the context of smart contract executions in large scale block-
chain systems. In particular, we propose Transactional Smart
Contracts (TXSC) as a framework that allows developers
to write smart contracts with correct transaction isolation
semantics. Unlike previous works [13, 15, 19] that propose
smart contract analysis tools to detect concurrency bugs in
smart contracts, TXSC aims to free smart contract devel-
opers from the burden of implementing correct concurrency
control semantics for each smart contract. Instead, devel-
opers can focus on the smart contract application semantics
and leave the concurrency semantics to TXSC.

Concurrency control problems arise in two general con-
texts during smart contract function execution depending
on whether the application semantic functionality is imple-
mented by a single or multiple functions. In a single func-
tion, each function in a smart contract is executed correctly
(and in isolation) as a miner validates its execution. How-
ever, the state of the data in the blockchain is visible and
can be read all the time by any end-user. An end-user might
take action based on a value read, but due to the concur-
rent execution of smart contract functions, such a read value
might be stale when the function is executed. TXSC needs
to ensure that the attribute values observed by an end-user,
where these attributes are in the read set of a function,

http://arxiv.org/abs/1909.06494v1


are still valid when the function is executed. Alternatively,
the semantic functionality might be executed by multiple
functions in the same or even different smart contracts on
potentially different blockchains. These functions might in-
voke each other in an asynchronous manner. In particular,
a function, before termination may call another function to
perform a specific task, which in turn calls a third func-
tion, and so on. This arises due to smart contracts in a
single blockchain like the puzzle example in [15] or across
multiple chains [2, 5] that requires atomic execution across
blockchains [10, 18, 24]. In this case, different invocations
of the function might be interleaved resulting in incorrect
executions due to the lack of isolation.

In this paper, we propose the Transactional Smart Con-
tracts paradigm to solve these concurrency problems. In
particular,

1. This paper models smart contract concurrency anoma-
lies as transaction isolation problems. Examples illus-
trate how different smart contract concurrency anoma-
lies can be mapped to the problem of transaction isola-
tion of either single domain or distributed cross-domain
transactions.

2. TXSC is the first framework to provide smart contract
developers with transactional primitives start transac-
tion and end transaction. TXSC takes a smart con-
tract that contains these primitives as an input and
translates it to a transactionally correct smart contract
using the smart contract native language.

The rest of the paper is organized as follows. We start with
two examples to illustrate the types of concurrency anoma-
lies that can arise in the context of smart contracts in Sec-
tion 2. Data and transaction models are presented in Sec-
tion 3. Section 4 explains our solution and presents TXSC
and the paper is concluded in Section 5.

2. CONCURRENCY ANOMALIES IN SMART

CONTRACTS
Most of the smart contract anomalies identified in prior

work [7, 13, 15, 19] are rooted to faulty transaction isolation
semantics implemented by the smart contract developers.
These anomalies can be classified into two categories: 1)
faulty transaction isolation semantics among transactions
that span a single administrative domain (or one block-
chain) and 2) faulty transaction isolation semantics among
distributed transactions that span several administrative do-
mains (more than one blockchain or one blockchain and ser-
vices outside the domain of this blockchain). We explain the
two categories using the following two examples from [15]
and [19]. For consistency with the original blockchain ter-
minology, in this section, we refer to a function call request
as a transaction (later we will change this).

The puzzle example. This example illustrates the first
category of smart contract concurrency anomalies. In this
example, an end-user, the challenger, deploys a smart con-
tract that pays another end-user, the solver, a reward if the
solver’s submitted puzzle solution is correct. Algorithm 1
shows the puzzle smart contract pseudocode. As shown, the
smart contract has three functions: a Constructor (Line 6),
UpdateReward (Line 12), and SubmitSolution (Line 19) func-
tions. The Constructor is executed by the contract owner,

the challenger, to initialize the smart contract object. Up-

dateReward can be executed only by the challenger to up-
date the reward value of the puzzle. Furthermore, UpdateRe-
ward can only be executed if the puzzle has not been solved
yet (Line 14) and UpdateReward sends the old reward value
to the challenger and updates the reward value with the
new value sent by the challenger (Line 16). SubmitSolu-

tion (Line 19) allows any solver to submit a solution to the
puzzle only if the puzzle has not been solved yet. If the
submitted solution is correct (Line 21), the reward goes to
the solver, the puzzle’s solution is updated, and the puzzle
is marked as solved.

Now, assume Alice is a challenger who posts a puzzle that
follows the smart contract description in Algorithm 1 in the
Ethereum network and she sets the reward value r to r = 2
ethers, the currency of the Ethereum network. Bob, a solver,
reads the reward value r = 2 ethers, solves the puzzles,
and submits the solution to the smart contract through a
transaction TX1. Bob assumes to receive a puzzle reward
of 2 ethers if his solution is correct. Concurrently, Alice
might, benignly or maliciously, schedule a transaction TX2

that updates the reward of the puzzle to a smaller value
than the current reward e.g., r = 0. If TX2 is executed
first, r would be updated to its new value 0. While updat-
ing the reward value should result in aborting TX1 as the
value of r read by TX1 is stale, the smart contract code in
Algorithm 1 would allow TX1 to execute. This results in
Alice receiving a solution to her puzzle while Bob gets a re-
ward of 0 ethers. As both TX1 and TX2 access an object
that spans only one blockchain, the Ethereum network, this
concurrency anomaly falls into the first category of the two
aforementioned categories.

The BlockKing [2,19] example. This example demon-
strates the second category of smart contract concurrency
anomalies where end-user distributed transactions span sev-
eral administrative domains (objects of one or more blockchains
in addition to asynchronous calls to external services). Al-
gorithm 2 shows code snippets from the original 366 lines
of code of the BlockKing smart contract [2] where concur-
rency anomalies occur. The BlockKing smart contract works
as follows. At any moment in time, there exists one block
king, initially, the contract owner. Users send money to
the contract via the Enter function (Line 4) as bids to be-
come the next block king. The Enter function stores the
address of the caller, the current block number, and the
caller’s bid value in the attributes warrior, warriorBlock,
and warriorGold respectively. Then, the Enter function
calls an external random number generator to generate a
random number between 1-9 and if the returned number
equals to the first digit of the block number stored in the
warriorBlock attribute, the caller of the Enter function be-
comes the new block king. A block king gets a percentage
of the bid money of every call to the Enter function and
the contract owner gets the remaining percentage of this
bid money. Notice that the random number generator trig-
gers an asynchronous callback function (Line 10) where the
returned random number is checked against the block num-
ber in the warriorBlock attribute. If the returned random
number matches the first digit of the block number in the
warriorBlock, the current warrior becomes the new block
king.

If calls to the Enter function are blocking; meaning that at
most one call to the Enter function is allowed until its call-



Algorithm 1 Puzzle smart contract example in [15]

class Puzzle {

1: address public owner ⊲ contract owner

2: bool public solved ⊲ true if the puzzle is solved

3: uint public reward ⊲ puzzle solving reward

4: bytes32 public diff ⊲ puzzle difficulty

5: byte32 public solution ⊲ puzzle solution if found

6: procedure Constructor

7: this.owner = msg.sender
8: this.reward = msg.value
9: this.solved = false
10: this.diff = bytes32(msg.data) ⊲ set difficulty

11: end procedure
12: procedure UpdateReward

13: requires(msg.sender == this.owner)
14: if ! solved then
15: transfer reward to owner
16: reward = msg.value
17: end if
18: end procedure
19: procedure SubmitSolution

20: if ! solved then
21: if sha256(msg.data) < diff then
22: transfer reward to msg.sender
23: solution = msg.data
24: solved = true
25: end if
26: end if
27: end procedure

}

back is completed, the smart contract in Algorithm 2 would
not have any concurrency anomalies. However, the smart
contract in Algorithm 2 is non-blocking. This non-blocking
behavior allows many concurrent calls to the Enter function
to take place. If multiple transactions are concurrently sent
to the Enter function, each transaction would replace the
values of the warrior, the warriorBlock, and the warrior-
Gold attributes of all the previous incomplete transactions.
This leads to an advantage to the latest caller who sends a
transactions to the Enter function before all previous call-
backs occur. Every trigger to the callback function gives the
latest caller a chance to become the new block king while
previous callers have no chance to become the new block
king. We illustrate this transaction isolation anomaly using
the following example. Assume Alice, Bob, and Carol con-
currently want to become the next block king. They send
three transactions (corresponding to three Enter function
calls) TX1, TX2, and TX3 accompanied by their bids to
the enter function respectively. TX1 updates the warrior
attributes to Alice’s attributes sent along with TX1 then,
calls the external random number generator. Before TX1’s
callback is triggered, TX2 replaces the warrior attributes
with Bob’s attributes sent with TX2 and similarly, TX3 re-
places the warrior attributes with Carol’s attributes. When
the callbacks of TX1, TX2, and TX3 are triggered, which
possibly could take place in another block in the BlockKing
blockchain, the three callbacks use the warrior attribute val-
ues of Carol to decide if she could be the next block king or
not. Carol gets 3 chances to become the block king while
Alice and Bob have no chance.

Algorithm 2 Snippets from the BlockKing contract [2]

class BlockKing {

1: address public king, warrior
2: uint public kingBlock, warriorBlock
3: uint public warriorGold, randomNumber
4: procedure enter

5: ... ⊲ check if minimum bet is sent

6: warrior = msg.sender, warriorGold = msg.value
7: warriorBlock = block.number
8: byte32 myid = oraclize query(0, ”WolframAlpha”,

”random number between 1 and 9”)
9: end procedure
10: procedure callback(byte32 myid, string result)
11: requires(msg.sender == oraclize cbAddress())
12: randomNumber = uint(bytes(result)[0]) - 48;
13: if singleDigitBlock == randomNumber then
14: ... ⊲ update reward

15: king = warrior, kingBlock = warriorBlock
16: end if
17: end procedure

}

Transactions in the first category can be atomi-
cally executed in one shot within one block of its
smart contract blockchain. On the other hand, dis-
tributed transactions could span multiple blocks in
one or more blockchains and hence ensuring their
atomicity while executing them in isolation is sig-
nificantly more complicated than executing transac-
tions in the first category in isolation.

3. DATA AND TRANSACTION MODELS
An open permissionless blockchain [16] comprises an ap-

plication layer and a storage layer. Clients in the application
layer have public identities represented by their public keys
and private signatures generated using their private keys.
Clients send signed transactions to the storage layer in or-
der to transfer assets from one client to another. The stor-
age layer consists of mining or computing nodes, miners,
and each miner manages a copy of the blockchain. Transac-
tions, in the storage layer, are grouped into blocks and each
block is hash chained to the previous block; hence the name
blockchain. When a mining node receives a transaction, it
verifies the transaction and adds it to its current block, only
if the transaction is valid. Mining nodes run a consensus
algorithm or in a permissionless blockchain Proof of Work
(PoW) to reach consensus on the next block to be added to
the blockchain.

Smart contracts are analogous to classes [7,11,25] in Ob-
ject Oriented Programming Languages (OOPL) and are used
by clients to implement complex data types. Clients deploy
smart contracts to a blockchain by sending a deployment
message to miners of this blockchain. As a result, a miner
instantiates an object of the smart contract class and stores
this object in the current block in the blockchain. Smart
contract objects have attributes that capture their state.
Once a smart contract object is instantiated in a block-
chain, the state of this object, as part of the blockchain,
is made public and can be externally read by any client
at any moment. In addition, smart contract objects have
functions that define the possible state transitions of these



objects. Since an object state is public, smart contract read-
only functions are pointless. Therefore, it is safe to assume
that any smart contract function call has to update at least
one attribute of the smart contract object [23]. A smart con-
tract object has an address in the blockchain. When a client
wants to issue a smart contract function call, the client sends
a function call request to the miners of the blockchain where
the smart contract is deployed. This function call request is
directed to the address of the smart contract object. Miners
use the smart contract address to locate the smart contract
object (state and code). This function call is accompanied
by some implicit parameters like msg.sender, the address of
the client who sent the transaction, msg.val, the value of
the money sent along with the transaction, and msg.data,
any data that needs to be sent along with the transaction.
In addition, function calls could be accompanied by some
function explicit parameters.

We follow the Ethereum [22] smart contract execution
model. Each function call is accompanied by some gas value.
The gas value represents the amount of money a client is
willing to pay to incentivize miners to execute the function
call. Miners charge some gas for every executed line of code
in the called function. A miner stores any intermediate re-
sults of a function call in their local storage. If the function
call completes before the function call runs out of gas, the
intermediate results are finalized and included in the miner’s
current block. However, if a function call runs out of gas be-
fore the function call is completed, intermediate results are
deleted and the smart contract object state does not change.
Either way, the miner includes a transaction that pays the
miner the amount of gas spent during the execution of the
function call in its current block. Smart contract function
calls are atomic meaning that each function call either ter-
minates after it successfully updates the object state in the
blockchain or rolls back to the object state before the call
occurs. Concurrent function calls are sequentially executed
one after the other without any interruption [19]. In block-
chain terminology, a function call request is usually referred
to as a transaction. Yet, a function call might not ensure the
ACID [4] properties of transactions in traditional databases.

In traditional DBMS, a client transaction starts when a
client calls the start (begin) transaction command. After-
wards, a transaction reads and updates some data values
followed by an end (commit) transaction command. The
role of the DBMS is to ensure the ACID properties of a
client transaction from the moment the transaction begins
till the moment the transaction ends (whether the transac-
tion commits or aborts).

In permissionless blockchains, miners have no way to learn
the details of all client activities before calling the smart
contract functions, e.g., when the client activities start and
what values were read before a function call request is sent to
the miners. Even when each function call is executed in iso-
lation from concurrent function calls, transaction isolation
concurrency violation still occur as shown in Algorithms 1
and 2 as a result of poor client transaction isolation, network
asynchrony, and smart contract asynchronous callbacks. We
consider a client transaction span to include all the read op-
erations that took place before the client sends a function
call, the function execution caused by the function call, and
any callbacks that are triggered as a result of this function
call. The goal of this paper is to ensure the ACID properties
of client transactions from the time a client starts a trans-

action till the end of the function call that terminates this
transaction.

4. TRANSACTIONAL SMART CONTRACTS

Algorithm 3 A smart contract example that uses TXSC

class SmartContract

1: procedure f1

2: start transaction
3: f1’s logic
4: end transaction
5: end procedure
6: procedure f2

7: start transaction
8: f2’s logic
9: end transaction
10: end procedure

This section presents TXSC, a framework that allows smart
contract developers to write smart contracts with correct
client transaction isolation semantics. The goal of TXSC is
to provide developers with the primitives start transaction
and end transaction. We call each function surrounded by
these primitives, a transactional function. TXSC ensures
that calls to transactional functions are executed in isolation
from any concurrent function calls to the same function or
any other function in the smart contract even in the presence
of network asynchrony. Algorithm 3 illustrates an example
smart contract written using TXSC. This smart contract
has two functions F1 and F2 and both functions are trans-
actional functions.

The ACID execution of a client transaction requires atomic,
consistent, isolated, and durable execution of this client trans-
action. If the semantics of every smart contract function is
correct, function calls should transfer the smart contract
object from one consist state to another. Therefore, consis-
tency is the responsibility of the smart contract developer.
Durability of a function call is guaranteed through the block-
chain protocol. Function calls that complete execution and
are included in a mined block are durable assuming this
block gets enough confirmations [3]. Since confirmed blocks
are replicated to most of the mining nodes, these blocks
are durable even in the presence of failures of many mining
nodes. This leaves the responsibility of ensuring atomicity
and isolation of client transactions on TXSC.

Isolation: Since smart contract developers have no way
to detect which attribute values have been read by the client
before a function call request is sent to miners, a smart con-
tract developer has to insert checks at the beginning of every
smart contract function call (similar to optimistic concur-
rency control [14]) to ensure that any data attribute value
read by the client and is in the read set of the function call
matches its current value in the blockchain. The read set of
a smart contract function is the set of attributes that a func-
tion reads during its execution. We assume that the outcome
of each function is invariant to any attribute outside the
read set of this function. To ensure serializability [4] of client
transactions, the client has to send her observed attribute
values of the read set of the function along with the func-
tion call. The smart contract has to ensure that the received
attribute values are up-to-data and they match the current
values of all the attributes in the function read set before



executing the function call. Otherwise, the function call has
to abort. A function call and all its asynchronous callbacks
must be executed in isolation from concurrent function calls
and callbacks.

Atomicity: The smart contract code has to guarantee
that a function call and all its asynchronous callbacks are
atomic. This means that updates that result from a function
call and all its asynchronous callbacks should either all take
place or none of them do.

TXSC automatically adds transaction isolation checks at
the beginning of every transactional function to ensure an
isolated execution of every call to any transactional function.
TXSC handles the atomicity of single domain transactional
functions differently from cross-domain distributed transac-
tional functions as follows.

4.1 Single Domain Transactional Functions
A Single Domain Transactional Function (SDTF for short)

is a function that reads and updates one or more smart con-
tract objects stored under a single administrative domain or
a single blockchain. SDTFs do not access external services
or objects outside the domain of their blockchain. As a re-
sult, SDTF calls do not trigger any asynchronous callbacks.
Any transactional function that accesses external services,
blockchains, or trigger callbacks is classified as cross-domain
distributed transactional function.

Since all the objects accessed by SDTF calls are stored
in a miner’s copy of the blockchain and since SDTFs do
not trigger asynchronous callbacks, a SDTF call can atom-
ically be executed in one shot. Therefore, the atomicity of
a client transaction that calls a SDTF is guaranteed by the
smart contract execution model. To ensure a seriablizable
execution of a SDTF, the function code has to only ensure
the freshness of the read set of this function. TXSC scans
every SDTF in a smart contract to determine the object’s
attributes in the read set of this SDTF. Then, TXSC adds
checks at the beginning of the SDTF to ensure that the at-
tribute values observed by the client at the time when the
transaction started are equivalent to attribute values when
the function call is received by miners.

Recall the puzzle example in Algorithm 1. Both Up-
dateReward and SubmitSolution are single domain function
calls. To convert UpdateReward to a SDTF, TXSC adds a
requirement that every function call to the UpdateReward
function must be accompanied by the client observed value
of the attribute solved, in the function read set, in its im-
plicit parameter msg.data. Then, TXSC adds a requirement
check solved == msg.data.solved. If the solvd attribute
value in a client’s UpdateReward function call is stale, the
call must abort and the smart contract object state remains
unchanged. However, if the solved attribute is up-to-date
and the function call is also accompanied by sufficient gas,
the call can be atomically executed and as a result, the re-
ward value is updated.

For the SubmitSolution function call, TXSC adds the re-
quirement checks solved == msg.data.solved and reward ==
msg.data.reward. Recall the concurrency violation of the
puzzle smart contract in Section 2. When Bob sends his so-
lution to the SubmitSolution function, Bob would send the
attribute values solved = false and reward = 2 ethers in
the msg.data parameter of his function call. When Bob’s
request is received by a miner, there are two possible out-
comes: 1) the function call gets executed only if the current

reward value equals to 2 ethers and the puzzle is not solved
and 2) the function call aborts if the reward value has been
updated in between the time when Bob’s transaction started
and the time when his function call is received by a miner.
Both outcomes do not violate the serializability guarantee.

4.2 Cross-Domain Transactional Functions
ACross-Domain Distributed Transactional Function (CDTF

for short) is a function that reads and updates one or more
smart contract objects stored under multiple administrative
domains or multiple blockchains. In addition, CDTFs can
access external services or objects outside the domain of
their blockchain. Also, CDTFs may trigger asynchronous
callbacks. As a result, updates made by a CDTF can span
more than one block of the blockchain. Recall the BlockKing
smart contract in Algorithm 2. Each function call first up-
dates the warrior, warriorBlock, and warriorGold in some
block and might update the BlockKing in another block
when the callback function is trigger. Allowing a CDTF
call to update the state of a smart contract object in several
blockchain blocks is problematic. If the updates in the first
block gets committed in a mined block, committed updates
cannot be rolled back even if updates in the following blocks
fail due to an exception or that the call runs out of gas. We
first explain isolation and atomicity challenges of CDTFs.
Afterwards, we explain how TXSC handles CDTFs.

Isolation: A CDTF has an entry point that comprises
a function call in an object in some blockchain. This func-
tion call might trigger other function calls of objects stored
in different blockchains. Since a CDTF can span multiple
blockchain objects, sending the read set of all the accessed
objects at the entry point (the first function call) is not suf-
ficient to guarantee transaction isolation as in SDFT. Since
all subsequent function calls to other objects are trigger over
an asynchronous network, the state of these subsequent ob-
jects might change in the time between the entry point and
the point when the subsequent call is received by the miners
of the blockchain where these objects are stored. Even if the
read set is carried on with every subsequent call, a stale at-
tribute in the read set might result in aborting a subsequent
call. However, the first call might have been committed
leading to a violation to atomicity.

Atomicity: Guaranteeing the atomicity of CDTF calls is
significantly more complicated than SDFTs. First, atomic-
ity could be violated if one of the subsequent calls to func-
tions in other blockchains runs out of gas. Second, if an
external service (e.g., the random number generator in the
BlockKing example) crashes for a long time or if the mes-
sage from this external services that triggers the callback
function is lost, atomicity can be violated resulting in an
inconsistent state (some updates occur in one block but the
callback is never triggered to complete the execution of the
function call).

Due to space limitation, we only present a high level so-
lution that guarantees both the isolation and atomicity of
CDTFs. The atomic and isolated execution of a CDTF that
spans multiple blockchains can be mapped to the problem
of atomic cross-chain transaction processing. Atomic cross-
chain commitment protocols have been introduced in [10,
12, 18, 24]. First, the solution requires to lock all the ob-
ject attributes in both the read set and the write set of
all the functions in a CDTF before calling the entry point.
This locking guarantees the isolation of a CDTF from all



concurrent function calls to any of the functions that can
update either the read set or the write set of a CDTF. How-
ever, as shown in [24], using timelocks as proposed in [10,18]
can lead to atomicity violations. The AC3WN [24] and the
CBC [12] protocols that use an additional blockchain as a
lock manger are possible solutions to manage the locking of
object attributes across blockchains. After all the object at-
tributes are locked, a caller can send a function call request
to the entry point accompanied by evidence that all the ob-
ject attributes in both the read set and the write set of this
function call and all subsequent function calls are locked.
Object attributes are unlocked only when the function call
that accesses them and its corresponding callbacks, if any,
terminate. Recall the BlockKing concurrency anomaly in
Section 2. Alice’s call locks the accessed attributes before
calling the Enter function. This prevents other callers, Bob
and Carol, from issuing concurrent function calls to the En-
ter function. Second, economic incentives should be used
to enforce callers to accompany function calls with enough
gas. At the entry point, a caller locks some money in the
contract that gets refunded to the caller only if all her func-
tion calls terminate. If any function call runs out of gas,
the caller loses her locked money to the contract owner who
can complete the call and gets the locked objects unlocked.
Finally, redo logs can be used to overcome the atomicity
violations in the presence of external service crashes. In
the BlockKing example, the smart contract object should
have an ”after-image” attribute corresponding to every at-
tribute in the object. The Enter function should update
the after-images of warrior, warriorBlock, and warriorGold
attributes. When the callback is triggered, only then, the
after-image attributes can be copied to the actual attributes
of the object. This guarantees that even if the external ser-
vice crashes or the callback trigger is lost, the object is in
consistent state.

5. CONCLUSION
In this paper, we presented TXSC, a framework that al-

lows developers to write smart contracts with correct trans-
actional semantics. We showed that TXSC can help devel-
opers solve isolation anomalies of both single domain and
cross-domain distributed transactional functions.

6. REFERENCES
[1] The dao (organization). https://en.wikipedia.org/

wiki/The DAO (organization)/.

[2] Blockking contract. https://etherscan.io/address/
0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1, 2016.

[3] Bitcoin confirmations. https://www.
buybitcoinworldwide.com/confirmations/, 2018.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database
systems. 1987.

[5] V. Buterin. Critical update re: Dao vulnerability.
https://ethereum.github.io/blog/2016/06/17/
critical-update-re-dao-vulnerability/, 2016.

[6] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer
Systems (TOCS), 31(3):8, 2013.

[7] T. Dickerson, P. Gazzillo, M. Herlihy, and
E. Koskinen. Adding concurrency to smart contracts.

In Proceedings of the ACM Symposium on Principles
of Distributed Computing, pages 303–312. ACM, 2017.

[8] E. W. Dijkstra. Cooperating sequential processes. In
The origin of concurrent programming, pages 65–138.
Springer, 1968.

[9] J. Gray et al. The transaction concept: Virtues and
limitations. In VLDB, volume 81, pages 144–154.
Citeseer, 1981.

[10] M. Herlihy. Atomic cross-chain swaps. arXiv preprint
arXiv:1801.09515, 2018.

[11] M. Herlihy. Blockchains from a distributed computing
perspective. Communications of the ACM,
62(2):78–85, 2019.

[12] M. Herlihy, B. Liskov, and L. Shrira. Cross-chain deals
and adversarial commerce. arXiv preprint
arXiv:1905.09743, 2019.

[13] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and
P. Saxena. Exploiting the laws of order in smart
contracts. arXiv preprint arXiv:1810.11605, 2018.

[14] H.-T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Transactions
on Database Systems (TODS), 6(2):213–226, 1981.

[15] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and
A. Hobor. Making smart contracts smarter. In
Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages
254–269. ACM, 2016.

[16] S. Maiyya, V. Zakhary, D. Agrawal, and A. E.
Abbadi. Database and distributed computing
fundamentals for scalable, fault-tolerant, and
consistent maintenance of blockchains. Proceedings of
the VLDB Endowment, 11(12):2098–2101, 2018.

[17] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. 2008.

[18] T. Nolan. Alt chains and atomic transfers. https://
bitcointalk.org/index.php?topic=193281.msg2224949#
msg2224949, 2013.

[19] I. Sergey and A. Hobor. A concurrent perspective on
smart contracts. In International Conference on
Financial Cryptography and Data Security, pages
478–493. Springer, 2017.

[20] J. Shute, M. Oancea, S. Ellner, B. Handy, E. Rollins,
B. Samwel, R. Vingralek, C. Whipkey, X. Chen,
B. Jegerlehner, et al. F1-the fault-tolerant distributed
rdbms supporting google’s ad business. 2012.

[21] N. Szabo. Formalizing and securing relationships on
public networks. First Monday, 2(9), 1997.

[22] G. Wood. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project
yellow paper, 151:1–32, 2014.

[23] K. Wüst, S. Matetic, S. Egli, K. Kostiainen, and
S. Capkun. Ace: Asynchronous and concurrent
execution of complex smart contracts.

[24] V. Zakhary, D. Agrawal, and A. E. Abbadi. Atomic
commitment across blockchains. arXiv preprint
arXiv:1905.02847, 2019.

[25] V. Zakhary, M. J. Amiri, S. Maiyya, D. Agrawal, and
A. E. Abbadi. Towards global asset management in
blockchain systems. arXiv preprint arXiv:1905.09359,
2019.

https://en.wikipedia.org/wiki/The_DAO_(organization)/

https://en.wikipedia.org/wiki/The_DAO_(organization)/

https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1 
https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1 
https://www.buybitcoinworldwide.com/confirmations/ 
https://www.buybitcoinworldwide.com/confirmations/ 
https://ethereum.github.io/blog/2016/06/17/critical-update-re-dao-vulnerability/ 
https://ethereum.github.io/blog/2016/06/17/critical-update-re-dao-vulnerability/ 
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949

	1 Introduction
	2 Concurrency Anomalies in Smart Contracts
	3 Data and Transaction Models
	4 Transactional Smart Contracts
	4.1 Single Domain Transactional Functions
	4.2 Cross-Domain Transactional Functions

	5 Conclusion
	6 References

