Computers & Industrial Engineering 136 (2019) 149-159

Contents lists available at ScienceDirect

computers &
industrial engineering

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie ——

Smart contract-based approach for efficient shipment management R

Check for
updates

Haya Hasan®, Esra AlHadhrami®, Alia AlDhaheri®, Khaled Salah®, Raja Jayaraman™"*

@ Department of Electrical & Computer Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
b Department of Industrial & Systems Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

ARTICLE INFO ABSTRACT

Keywords:
Supply chain management
Smart contracts

Efficient tracking of shipments is critical in managing global trade and logistics activities. The volume of global
container movement combined with information opaqueness and process complexity necessitates implementing
a robust technology solution with real time tracking capabilities. Blockchain is an emerging technology that

E;helr(e;"f offers the necessary platform to track and manage shipment movements in the supply chain using a peer-to-peer,
?;C chain secured, distributed ledger, and without intermediaries or trusted third parties. In this paper, we propose a
(o)

blockchain-based solution for efficient supply chain management involving items shipped via smart containers.
Our proposed solution utilizes the features of smart contracts in Ethereum blockchain to govern and manage
interactions between the sender and receiver. Shipped items are included in smart containers equipped with
Internet of Things (IoT) sensors that can be used to track and monitor predefined shipping conditions related to
temperature, geographical location, humidity, pressure, light exposure, sudden fall, broken seal, etc. Ethereum
smart contracts are used to manage shipment conditions, automate payments, legitimize receiver and also issue a
refund in case of violations to predefined conditions. In the paper, we present and discuss key aspects related to
architectural design, entity relations, interactions among participants, information flow, implementation and
testing of the overall system functionality with a potential business case applied to vaccine supply chain. The
Smart contracts were implemented in Solidity language and tested using Remix IDE environment, the code has
been made publicly available for academic, research and practice community.

Internet of things

1. Introduction technology. Blockchain provides a distributed peer-to-peer network

with shared ledger among all vested parties and participants. No cen-

Supply chain management of container transportation is important
since over 90% of the global trade is based on containerized shipment
movement. Levinson (2006) describes a comprehensive history of how
containerization has transformed the transportation industry. Off-
shoring due to global production and distribution operations currently
involves multiple parties submitting manual, paper based approvals
and obtain necessary clearance before transporting goods. The delays
and inefficiencies in the current shipment management process can
range from several days to weeks. This presents an important oppor-
tunity and need to adopt technology and automation solution that en-
ables timely supply chain decisions.

Since its inception in year 2008, Blockchain technology has con-
tinued to gain significant attention by industry, academia, and gov-
ernment. The disruptive nature of the technology with immense ap-
plication possibilities in transaction oriented services such as financial,
insurance, logistics, healthcare and makes it quite popular. Bitcoin is
one of the first and widely known applications of blockchain

* Corresponding author.

tralized authority or intermediary party is required to provide man-
agement or governance, or to verify or process the transactions.
Transactions are validated by miner nodes that aggregate all transac-
tions into blocks and chain them into the shared ledger. Miner nodes
follow a consensus algorithm such as proof-of work to validate and
agree on the integrity and accuracy of the transactions and blocks. This
creates a secure, synchronized and shared timestamped records that
cannot be altered. We direct the attention of readers to Toyoda,
Mathiopoulos, Sasase, and Ohtsuki (2017) for technical details on how
blockchain technology has been used to authenticate products in the
supply chain. Zhao, Fan, and Yan (2016) for applications to financial
products and Yue, Wang, Jin, Li, and Jiang (2016) for healthcare ap-
plication focused on privacy risk control.

Buterin (2014) discussed the ability to program the Ethereum
blockchain and another competing product Hyperledger developed by
IBM Blockchain. Unlike bitcoin blockchain, both Ethereum and Hy-
perledger enable users to build programmable logic and decentralized

E-mail addresses: haya.hasan@ku.ac.ae (H. Hasan), esra.alhadhrami@etic.ac.ae (E. AlHadhrami), alia.dhaheri@ku.ac.ae (A. AlDhaheri),

khaled.salah@ku.ac.ae (K. Salah), raja.jayaraman@ku.ac.ae (R. Jayaraman).

https://doi.org/10.1016/j.cie.2019.07.022

Available online 10 July 2019
0360-8352/ © 2019 Elsevier Ltd. All rights reserved.

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2019.07.022
https://doi.org/10.1016/j.cie.2019.07.022
mailto:haya.hasan@ku.ac.ae
mailto:esra.alhadhrami@etic.ac.ae
mailto:alia.dhaheri@ku.ac.ae
mailto:khaled.salah@ku.ac.ae
mailto:raja.jayaraman@ku.ac.ae
https://doi.org/10.1016/j.cie.2019.07.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2019.07.022&domain=pdf

H. Hasan, et al.

applications (DApps) using smart contracts. Smart contracts have the
ability to provide solutions to govern and manage business transactions
and agreements in multi-party settings. A Smart contract gets converted
to bytecode which is readable by the ‘Ethereum Virtual Machines’
(EVMs). The EVM takes an arbitrary bytecode and produces a guaran-
teed result that is agreed on by all miner nodes using a consensus al-
gorithm. Christidis and Devetsikiotis (2016) present potential applica-
tion of blockchain and smart contracts for IoT. A smart contract
translates the contractual clauses into a code of events and functions.
Therefore, once a function is called or an event is triggered the contract
self-executes and it can verify the enforcement of predefined terms of
the contract while eliminating the need for trusted intermediaries be-
tween the transacting parties.

Efficiency of supply chain transactions can be improved con-
siderably from the unique features and architecture of blockchain. The
ultimate aim of supply chain management is to have visibility, prove-
nance, and tracking capabilities. Typically, the shipment process of
containers involves many participants and with each participant having
their own records and log. These logs are updated based on information
given by the other participants along the chain. For any adequate vis-
ibility and traceability, the tracking process must have a unified,
trusted, tamper proof shared log that is globally accessible by all sta-
keholders. Huh, Cho, and Kim (2017) emphasize that any change or
violation that occurs to the condition of shipment should be recorded
and communicated to all involved parties, especially, when shipment
contains, kits or packages containing temperature-sensitive items such
as donor organs, vaccines, blood samples, milk, etc. Supply chain
management of perishable, temperature sensitive items are commonly
referred as cold chain management. Fig. 1 illustrates an example of cold
chain management in healthcare with IoT devices used in smart con-
tainers to monitor and trigger notifications with changes in tempera-
ture. Other key criteria that can be monitored using IoT enabled devices
during shipment transportation include geographical location, hu-
midity, light exposure, sudden fall, broken seal are related criteria.
Monitoring geographical location also enables geo-fencing to detect
when a shipment has deviated from its anticipated route, been delayed;
or if a kit is removed from a storage location. This is particularly useful
for high-value products or manage controlled substances.

Motivated by the critical need for a pragmatic supply chain solution,
and the widespread adoption of blockchain and IoT technologies in
various fields, we propose a blockchain-based supply chain manage-
ment solution for IoT-enabled smart containers. IoT-enabled containers
can facilitate efficient supply chain management by sending accurate
sensory data to cloud storage and at the same time trigger notifications
to be recorded on the blockchain ledger when violations occur. Smart
contracts were used to void shipment when violations occur, automate
the payment and issue a refund. The implementation was carried out in
a decentralized manner without any intermediaries.

The key contributions of this paper can be summarized as follows:

® Present a framework and solution using Ethereum blockchain via

Warehouse

>

Manufacturer

AL

Computers & Industrial Engineering 136 (2019) 149-159

smart contracts for shipment supply chain management. The pro-
posed solution eliminates the need of a trusted third party or in-
termediary.

Demonstrate how IoT and blockchain technologies can be jointly
utilized to ensure reliable shipment tracking, with no violations.
Develop and implement a solution for single echelon supply chain
transaction between a buyer and seller. We describe the overall
system, architectural design, entity relations, and interactions
among participating parties.

Highlight key aspects and details that are generic enough to be
applied to mutli-echelon and multiparty settings.

The rest of this paper is organized as follows. Section 2 presents the
background literature. Section 3 presents our proposed solution for
shipment supply chain management. Section 4 describes a potential
business application of the proposed solution to vaccine supply chain.
Section 5 describes the implementation aspects and testing of the smart
contract and Section 6 presents conclusions and future work.

2. Related literature

We discuss relevant literature on supply chain and cold chain
management solutions for shipment tracking using RFID and recent
applications including blockchain technology. We emphasize related
work on techniques used to improve the reliability, security and data
management in supply chains.

2.1. Supply chain management using RFID

RFID technology has been effectively used for product safety, visi-
bility and traceability across several industries. Being a mature tech-
nology RFID solution enables systemic improvements across several
supply chain & logistics processes. Musa, Gunasekaran, and Yusuf
(2014) present an extensive review on supply chain product visibility
detailing various standards, systems and architectures. Lee and Park
(2008) proposed a dynamic tracing task model for traceability function
using RFID technology in supply chains using existing enterprise ap-
plications. Angeles (2005) assert “RFID can enable “process freedoms”
and real-time visibility into supply chains” present several case studies
and implementation guidelines. Lin (2009) presents an integrated fra-
mework for the development of RFID technology. Toyoda et al. (2017)
deployed RFID technology to track initial product movement in supply
chain. RFID-enabled supply chain makes use of the EPC (Electronic
Product Code) to uniquely identify an item. The EPC is stored in the
RFID tag and each party in the supply chain adds more information to
the tag that acts as a piece of evidence that it passed through the right
intended party. This method is used to track the products and find
counterfeits by checking the tags and identifying any inconsistencies.

Ko, Kwak, Choi, and Song (2015) designed a system compatible
with any kind of IoT device to monitor and track the temperature
ranges needed during the transportation process. The system proposed

Hospital Patient

A
&

*

H

Fig. 1. An example of Cold supply chain tracking in healthcare.

150

H. Hasan, et al.

is connected to the cloud platform Hadoop to allow the processing of
large distributed information. Although, the system looks promising,
the authors do not provide a functional prototype or even a simulation
to verify the design criteria. Furthermore, Li and Chen (2011) proposed
a similar system using RFID technology for pharmaceutical applica-
tions. They discuss the design architecture and a comparison between
the use of RFID and infrared technology (IR). Their comparison yields
to the conclusion that RFID is more sensitive to temperature changes
and unlike IR it does not have limited coverage of all the 3D space.
Similar to the work proposed in Ko et al. (2015), they do not provide
any verification results of the proposed system. Furthermore, Chou
et al. (2013) present an Intelligent Insulating Shipping Container (IISC)
that can be used in cold chain logistics management. The container
communicates its temperature with the deliverer through Bluetooth
Smart and their architecture uses a low power circuit design, hence
their proposed solution consumes significantly less power. However,
security and privacy of communicated data were not part of their
system design. Unlike Chou et al. (2013), Urien and Piramuthu (2013)
incorporate the use of the internet smart card along with RFID tags to
secure the communication between the tags and the rest of the system.
Their application focusses on avoiding degradation and contamination
of food products while transferring them from the farm to the fork.
They create an authentication system and use a registration server.
Although creating an authentication system improves security, it cre-
ates an overhead on the overall system’s performance.

Although RFID technology has been successfully adopted for supply
chain management across many industries, its purpose to track product
movement transcending multiple echelons is limited. Thus end to end
product tracking requires adoption of technology that enables multi-
party authentication and information sharing in real time.

2.2. Supply chain and cold chain management using blockchain

Blockchain is an emerging technology that can be leveraged to solve
a variety of supply chain management issues (Christidis & Devetsikiotis,
2016; Kim & Laskowski, 2018). Due to blockchain’s intrinsic powerful
features such as highly secure, trusted, immutable, shared ledger, and
globally accessible. These features are important to supply chain deci-
sion makers and provides end-to-end tracking capability during the
transportation process, offers transparency, and operations in a de-
centralized manner without the involvement of intermediaries (Zhao
et al.,, 2016). Jayaraman, Salah, and King (2019) highlight improve-
ment opportunities in healthcare supply chains using IoT and block-
chain. Banerjee (2018) present use cases and a high level overview of
how enterprise resources planning systems and blockchain technology
can provide transparency in supply chain operations.

Toyoda et al. (2017) proposed a novel Blockchain-based product
ownership management system (POMS) to detect counterfeits in the
after-sale supply chain. Their findings suggest that the cost is less than
US$1 if the number of ownership transfers in the system does not ex-
ceed six. A proof of concept of the system was built using Ethereum,
where the proposed POMS utilizes the ‘proof of possession of balance’ in
bitcoins into the ‘proof of possession of products’. POMS relies on an
RFID system for product transfers between manufacturer and until first
retail sale. They do not consider monitoring and tracking the system
during the entire transportation process.

Cold chain management deals with efficiently managing, storing,
handling and transporting temperature sensitive products including
perishables from the point of manufacture till final point of use. Cold
supply chain management is heavily used in pharmaceutical, food and
related industries. Literature on cold supply chain management using
blockchain is scant but has gained significant attention among research
and practice community. Mackey and Nayyar (2017) discuss several
existing and emerging technologies to manage counterfeits in phar-
maceutical supply chain. They assert the literature lacks extensive re-
search on this subject, except for some governmental and industrial

Computers & Industrial Engineering 136 (2019) 149-159

initiatives on the use of blockchain to provide solutions for the phar-
maceuticals industry such as Blockverify (Mackey & Nayyar, 2017;
Toyoda et al., 2017), iSolve (Mackey & Nayyar, 2017) and Parexel
(Zobel, 2016). For instance, Tian (2016) attempt to address food safety
issue in China by proposing a system that integrates RFID with block-
chain to trace the food transported using trusted information. They
showcase that centralized systems are monopolistic and therefore,
suffer from trust issues. However, blockchain based systems are of a
high cost with a low rate of transactions which is restricted to ~7
transactions per second. The conceptual system proposed by Tian
(2016) can be extended if a simulation or a use case scenario were
demonstrated. Furthermore, Tian (2017) present a solution to cen-
tralized solution of supply chain management using the blockchain
technology and addressing scalability issue. The authors incorporate
HACCP (Hazard Analysis and Critical Control Points) along with
blockchain and IoT devices. Their work compares distributed data-
bases, blockchain and BigChainDB which effectively is a scalable
blockchain. The comparison is based on: latency, throughput, capacity
and immutability factors. They concluded that BigChainDB combines
the advantages of both blockchain and distributed databases. Thus,
their proposed solution employs BigChainDB with a complete scenario
from the supplier to the retailers and consumers. However, their ap-
proach presents security vulnerabilities due to the use of third party for
certifications and audits.

Bocek, Rodrigues, Strasser, & Stiller, 2017 present a use case for
pharmaceutical supply chain to effectively monitor the distribution of
medical products in compliance with European Union (EU) regulations.
Their work uses IoT sensors along with the blockchain technology and
smart contracts to ensure the EU regulations are in compliance during
the transport of the medical products was implemented in year 2016
lead to the formation of the company ‘Modum.io AG. Temperature is
monitored and recorded during the delivery of the product from the
manufacturer to the retailers. Their approach depends on Ethereum
nodes to execute and validate smart contracts. Every shipment has a
new smart contract that is written with Solidity and a database server to
store the temperature data. The client would use an Android based
application to associate the tracking number of the package commu-
nicated through Bluetooth LE with the device MAC address stored in the
server. The proposed system should be improved and tested for more
number of distributors and shipments. The authors can improve by
adding an offline mode feature which would result in a more refined
architecture of the system. It would have been a more complete system
if changes in temperature were associated with alerts or other types of
triggers that would show interference is needed in case any additional
criteria for a certain shipment have changed along the way. Therefore,
controls are needed not only to monitor the temperature but also to
handle exceptions ensuring all shipments reach successfully per the pre-
specified conditions. Additionally, the authors failed to address the
issue of counterfeits or after sales supply chain management. Bocek
et al. (2017) only consider product tracking at pre-specified the re-
quired temperature during the entire transportation process.

Blockchain offers potential solution for end to end shipment man-
agement across multiparty settings. Our solution and implementation
highlights important features of this emerging technology using smart
contracts.

3. Proposed solution for shipment management
3.1. System overview

Our proposed solution utilizes sensor information from IoT-enabled
shipments, combined with Ethereum smart contracts. The smart con-
tracts play an essential role in triggering notifications and enabling the
participating entities to continuously monitor, track and receive alerts if
any violations occur. Therefore, ensuring the integrity of the items
within the shipment. Fig. 2 illustrates an overview of the proposed

H. Hasan, et al.

|

Sender

|
¢

&

Computers & Industrial Engineering 136 (2019) 149-159

<

e

Publish sensors —_
s }

data =4
periodically o
2

o

>

Receiver m

i

>

°

Send Self-check g
lr;esul.ts and t \ °°e:§, N %
eceiver events . 1]
Q&\O o% @

W o & 2

& © o

Q~ =

Smart contract

Fig. 2. General system overview.

system. As shown in the figure, the main components are: sender and
receiver of the shipment, IoT-enabled container, Ethereum blockchain
that has the EVM executing the smart contract and the Message Queue
Telemetry Transport (MQTT) server hosted in the cloud to aggregate,
store, and publish all sensor data generated from the IoT sensors in-
stalled within the shipment.

3.2. System design

We discuss key design aspects of our proposed solution. We consider
four main participants: the sender, the receiver, IoT device installed
within the shipment container, each of the participant has an EA
(Ethereum Addresses) and the smart contract. In Ethereum, unique EA
and key pairs are generated instantly with no centralized entity for
managing key distributions (Khan & Salah, 2018). The smart contract is
created by the sender with conditions of the sale, adherence to criteria
such as temperature, route, payment terms, etc.

3.2.1. Sender and receiver

The typical supply chain model for shipping container shipment can
be considered as single echelon with a single sender and single receiver,
or could be multi-echelon with many senders and receivers. We focus in
this paper on single echelon shipments. However, the presented solu-
tion, design, system principles are flexible and can be extended to in-
clude multi-echelon shipments whereby the receiver becomes sub-
sequent sender, in which case the IoT device within the container has to
be reset at each echelon.

A smart contract that joins the supply chain entities together is
created and initiated by the sender after the IoT-enabled container
performs the self-check to ensure that the shipment is in agreement
with pre-specified shipping conditions. The smart contract governs
automatically the rules whereby the receiver has to deposit the pay-
ment prior to shipping, and if the shipment reaches the final destination
with no violations, then the payment would be issued to the sender. On

the other hand, if violations to shipping criteria occur, the shipment is
aborted, and a refund is issued to the receiver. In addition, with the use
of smart contracts, we can ensure that the shipment reached the legit-
imate receiver. This is accomplished by having the sender provide a
keccak256 hash of a passphrase that gets stored in the smart contract
prior to shipment dispatch. The carrier will not release the container to
the receiver unless the receiver provides the correct passphrase which
gets sent to the smart contract and compares it to the stored
keccak256 hash. If the hashes match, then the carrier will deliver the
shipment to the receiver. The receiver has 48 h to provide the correct
passphrase. Failure to do so will result in 50% refund to the receiver.

3.2.2. IoT-enabled container

The IoT-enabled smart container is equipped with IoT sensors to
continuously monitor and track the shipment from the sender to the
receiver. The IoT sensors includes temperature sensor to monitor the
temperature, Global Positioning System (GPS) receiver to trace the lo-
cation of the shipment, pressure sensor to detect pressure differences
that can indicate opening or closing the container, and an accelerator to
detect jerks in case of sudden fall or drop. All the sensors are connected
to a Raspberry Pi 3 Model B- the onboard IoT processing hardware
placed inside the container. High-end Arduino boards such as Arduino
Mega with networking capabilities can be used. 4G or 5G connectivity
will be needed for periodically transmitting the data to the MQTT
server, and for communicating with the Ethereum blockchain network.

Automatic push alerts and notifications are sent to the sender and
receiver when certain conditions are not met or violations occur during
transportation. Violations are determined by a rule-based engine at the
Raspberry Pi. Certain rules should be specified for each sensor reading,
failing to meet these rules is considered as a violation. The rules and
their thresholds can be changed according to the nature of the shipment
with agreement between the sender and receiver. Sensor readings are
monitored by the IoT-enabled container and whenever there is are
variations, the shipment container initiates call to certain functions

H. Hasan, et al.

IVIQ)IFIF ' ‘
5
server v

Cloud Blockchain
Bridge Bridge
c
RO
E Blockchain Services o
5 Messaging Services g
£ (MQTT) a
g Etherum Wallet =3
o [0}
- =
=
1}
(T Z
o T
= Device Manager o
c = . . o
v - Controller Services (Configuration, =
g = Status, Control) ~2
o = -
o -—
g = 1/0
=S 5 Local Storage (Digital, Analog,
O Serial, USB)

Sensors attached to Container

Fig. 3. Interfaces and interactions of IoT-enabled container with MQTT server
and Ethereum blockchain network.

within the smart contract and then events for these violations are
broadcasted to all stakeholders including the sender and receiver.
Apart from the smart contracts, periodic readings of sensor data will
be sent to a cloud-based MQTT server. The Raspberry Pi of the con-
tainer is the publisher to the container’s state that contain the readings
of the temperature, location, motion, and state (open/close). The MQTT
structure gives the option to the parties such as the sender and receiver

Computers & Industrial Engineering 136 (2019) 149-159

to subscribe to all or some of the published data or topics. As described
in Bahga and Madisetti (2016), Fig. 3 shows key processing, interfaces,
and communication components among IoT-enabled container, sensors,
Raspberry Pi, cloud-hosted MQTT server, and the smart contract
through the Ethereum blockchain network.

3.2.3. Smart contract

For each IoT-enabled shipment container, a separate smart contract
is created by the sender. The smart contract contains the following key
elements:

e Variables. The variables used in the smart contract contain the
values and states that reflect certain conditions and parameters.
Variables can be made public or private. Some of the important
variables in the proposed smart contract is the package state and the
type of violation. Also, the addresses of the participating entities are
saved as variables.

e Methods. Methods are basically code functions. The methods in the
smart contract are directly related to the functionality of the con-
tract. In our case, the methods will trigger alert notification for
violation and package related events as well as authenticate the
legitimacy of receiver using the keccak256 hash. Methods can be
publicly accessible and modifiable by all, or can be restricted to
certain participants.

e Modifiers. Modifiers are logic tests that are used as conditions or
requirements before executing certain methods/functions. For ex-
ample, a modifier can be used to require the shipment cost to be of a
certain value before accepting the deposited money by the receiver.

e Events. Events can be used to log important information to be re-
corded on the ledger, or to broadcast this information to all nodes
and participants. For example, events are used in our system to re-
cord and propagate violations if received from the IoT device within

Smart Contract

Smart contract attributes

Smart contract functions:

loTContainer()
CraetePackage() OnlySender

StartShipment() OnlySender

Refund() OnlyContainer

PerformmedSelfCheck (int result, string resultmsg) OnlyContainer
DepositMoneyforShipment(bytes32 hash) payable OnlyReceiver costs

ShipmentArrived() OnlyContainer
ProvidePassphrase(string code) OnlyReceiver

ProvidePassPhraseAfterTime(string phrase) OnlyReceiver
UnlockShippment() OnlyContainer
GetShipmentMoney() OnlySender

violationOccured(string msg, violationTypeyv, int value) OnlyContainer

1 n n
1 1 1
loT Container Sender Receiver

container: address

sender_owner: address

receiver: publicaddress

Fig. 4. Entity relationship diagram (The full code of the smart contract is available at https://github.com/smartcontract694/project.git).

153

https://github.com/smartcontract694/project.git

H. Hasan, et al.

the shipment container. Therefore, if the temperature or geo-loca-
tion values are beyond predefined ranges, or the IoT-enabled con-
tainer has opened unexpectedly, or a sudden fall had occurred, the
Raspberry Pi will capture such violations and call the suitable
method within the smart contract, and subsequently the smart
contract will use events to record and broadcast such violations.

Fig. 4 shows the entity-relationship diagram that illustrates the
smart contract attributes, and functions and the relationship among
participants including the sender, receiver and IoT-enabled container,
and the smart contact. As shown in Fig. 4, each shipment container can
have one smart contract while each sender and receiver can have
multiple smart contracts associated with different shipments.

4. Potential business application to vaccine supply chain

Potentially, there are many real-world use cases that can leverage
our proposed solution such as shipment traceability in agriculture and
food supply chain, as well as package tracking and delivery in variety of
industries including automotive, retail, and healthcare. In this section,
we discuss how our solution can be applied to vaccine supply chain.
Other use cases can follow the same pattern, but the actors and their
interactions can be adapted to the context.

Vaccine supply chain shares significant waste and fraud in addition
to challenges related to global procurement, storage and distribution,
payment processing and track and trace. Vaccines are unique health-
care products that are required to be handled, stored and administered
to prevent substantial deviations of storage temperature or other con-
ditions that may render the product ineffective for use. It is worth
noting that over 50-60% of vaccines lose their potential due to supply
chain failures and 80% of vaccine costs are supply chain related
(StaTwig, 2019). The use case in this application has the following four
actors: manufacturer (sender), hospitals (receiver), IoT device enabled
shipment container and the smart contract. The delivery and handling
of the shipment is done by shipment carrier.

In the first step, the manufacturer (sender) creates a smart contract
and invokes an shipment order via CreatePackage () for supplying
specific quantity of vaccines to the sender with agreed conditions of the
shipment such as the cost and quantity, temperature, validation con-
ditions during transit and at receiving. The global nature of the vaccine
shipments can have validation and inspection at various transit points.
So the opening of the container at various locations can be precisely
recorded, and thereby preventing any unauthorized access to the
shipment. The shipment is sent via an [oT device enabled container that
invokes PerformmedSelfCheck () to ensure the shipment conditions
are in accordance with the agreed conditions. If in violation, the ship-
ment is aborted. When a successfulnotification of self-check is received,
the hospital (receiver) deposits the agreed transaction amount invoking
the function DepositMoneyforShipment () .The manufacturer
(sender) invokes the startshipment () function notifying the ship-
ment carrier to transport the container to the hospital (receiver).
Throughout the transit of the container, the IoT device relays periodic
alert notification to both the manufacturer (sender) and hospital (re-
ceiver) about the geographic location, violation to the temperature or
other conditions such as unexpected container opening or jolts via
violationoccured () function. If any agreed parameters are vio-
lated the shipment is aborted and sent back to the sender. Note that the
manufacturer (sender) adds the keccak256 hash of a passphrase at the
time of CreatePackage () to the smart contract and used for vali-
dating the authenticity when the hospital(receiver) provides the correct
keccak256. Upon receiving notification regarding the arrival of the
shipment the hospital (receiver) has to provide the correct passphrase
within 48 h, else 50% of the shipment amount would be refunded to the
receiver and the shipment is aborted. The receiver authentication is
validated by matching the passphrase and is critical to ensure receiver
authentication and traceability in the vaccine supply chain. The

Computers & Industrial Engineering 136 (2019) 149-159

implication of our proposed approach can potentially lead to reduction
in wastes, effective traceability, efficient funds transfer and receiver
authentication.

5. Implementation and testing

The proposed smart contract was implemented and tested using
Remix IDE http://remix.ethereum.org/. In this section, we provide the
main implementation details and focus primarily on testing the correct
interaction and functionality among system participants with the
Ethereum smart contract. The Remix IDE offers rich features that make
it possible to test and debug smart contracts prior to deploying them.
Remix IDE offers multiple Ethereum wallets, allowing us to simulate
real-life scenarios. Additionally, a built-in debugger comes with Remix
and allows the investigation of various transactions to ensure the cor-
rect behavior of the contract in various conditions.

5.1. Implementation details

The code was written in Solidity using the web browser based Remix
IDE. There are three entities participating in the contract, sender, re-
ceiver and IoT-enabled container. Each of the entity has an Ethereum
address and can participate by calling functions within the smart con-
tract at certain times. An entity is not allowed to make any function
call, this is done through the use of modifiers. The modifiers restrict the
functions to be called by only specific stakeholder in the supply chain.
For example, CreatePackage () can only be called by the sender,
PerformmedSelfCheck () can only called by the container carrier
and the DepositMoneyforShipment () can only be called by the
receiver.

Fig. 5 shows the attributes used in the contract code. In order to
only allow the execution of the functions in proper order based on the
shipments logical flow, the state of the package is maintained
throughout the code and within every function call. This is done using
the variable state, which is an enum named packageState. The first line
of code in every function is made to check the current state of the
package and based on the execution, any state changes and gets up-
dated. The new state is propagated as an event to all the entities in-
volved so that the next caller can act accordingly.

Violations related to the shipment container if detected after the
package has been transported, the container will call the function
violationOccurred (string, which
would take as parameters a string message for the triggered event, an
enum for the violation type and an integer for the violation value. The
function changes the state of the package to Aborted and issues a refund
to the receiver. Fig. 6 shows the code that is called by the container
when a violation occurs.

As shown, the smart contract was coded as it eliminates the need for
a trusted third party between the sender and the receiver. The contract
gets created by the sender. Once the smart contract is created, the item
is included in the shipment container and gets sealed, and subsequently
the Raspberry Pi board within the shipment container performs a self-
check, calls the function PerformedSelfCheck () within the smart
contract to proceed with the shipment. The shipment will be aborted if
the self-check fails.

This ensures that the container provided from a source is trusted by
both the sender and the receiver, works as expected with no flaws be-
fore the package is shipped. If the self-check’s result is successful, then
an event is triggered with the successful result and the receiver will now
have to deposit the money to the contract and a keccak256 hash is
provided. The hash is provided to check the authenticity of the receiver
when the shipment arrives at the destination. Upon arrival, the receiver
provides the correct passphrase to the carrier who will send it to the
smart contract. The smart contract hashes the provided passphrase and
compares it to the originally submitted hash, if they match then it is the
right passphrase and the shipment container unlocks. The receiver has

violationType, int)

http://remix.ethereum.org/

H. Hasan, et al. Computers & Industrial Engineering 136 (2019) 149-159

pragma solidity ~0.4.0;//version 0.4 or higher
contract IoTContainer{

//participating entities with Ethereum addresses

address container;

address public sender_owner;

address public receiver;

string public content;//description of container content

bytes32 public passphrase; //recived passphrase when money is deposited

string public receivedCode; //recived code to be hashed

enum packageState {
NotReady, PackageContainerReadyforSelfCheck, ReadyforShipment,
MoneyDeposited, StartShippment,WaitingforPassphrase, ReceiverAuthentiated,
WaitingForCorrectPasscode, ShipmentReceived,
AuthenticationFailureAborted,Aborted }

packageState public state;

uint startTime;

uint daysAfter;

uint shipmentPrice;

//sensors

enum violationType { None, Temp, Open, Route, Jerk}

violationType public violation;

int selfcheck_result;//1 or 0 indicating the self check result of IoTContainer

int tempertaure; //track the tempertaure any integer

int open; //if the container opens 1 , @

int onTrack; //to track the route 1 , 0

int jerk;//sudden jerk 1, ©

Fig. 5. Attributes of the smart contact (The full code of the smart contract is available at https://github.com/smartcontract694/project.git).

48 h to provide the correct passphrase. If the receiver fails to provide interaction with function calls and events.

the right passphrase within 48 h, 50% of the shipment price would be
refunded to the receiver and the shipment is aborted. Figs. 7 and 8
illustrate the message sequence diagram of the logical flow of this

In Fig. 7, we present two scenarios with no violations. The first
scenario is when the passphrase is provided within 48 h are incorrect.
The other scenario shows the logical flow when the correct passphrase

function Refund() OnlyContainer({
require(state == packageState.Aborted);//violation occured
if(violation != violationType.None){
receiver.transfer(shipmentpPrice);
ShipmentviolatedandRefund(msg.sender);
selfdestruct(msg.sender);
}
}
function violationOccurred(string msg, violationType v, int value) OnlyContainer{
require(state == packageState.StartShippment);
violation = v;
state = packageState.Aborted;
if(violation == violationType.Temp){
tempertaure = value;
Tempertaureviolation(msg ,true, tempertaure);
else if(violation == violationType.Jerk){
jerk = value;
SuddenJerk(msg, true, jerk);

else if(violation == violationType.Open){
open = value;
SuddenContaineropening(msg, true, open);

else if(violation == violationType.Route){
onTrack = value;
OutofRoute(msg , true, onTrack);

}
Refund();

Fig. 6. Smart contract functions in case of violation (The full code of the smart contract is available at https://github.com/smartcontract694/project.git).

155

https://github.com/smartcontract694/project.git
https://github.com/smartcontract694/project.git

H. Hasan, et al.

. Smart contract

e i

CraetePackage()

PackageReadyforSelfCheck

PerformmedSelfCheck (int
' result, string resultmsg)

DepositMoneyforShipment
(bytes32 hash)

DepositMoneyDone

StartShipment()

StarttedShlppment

ProvidePassphrase(string code)

: Receiver /

ReceiverAuthenticationFailure

ProvidePassthseAﬂerfime(
string phrase)

AuthentlcatlonFallureAborted

D selfdestruct

RecelverAuthentlcatedSuccessfuIIy

UnlockShippment()

ShipmentReceived
GetShipmentMoney()

) selfdestruct

Fig. 7. Message sequence diagram with no violations.

N
v ¢

Sender Smart contract

CraetePackage() ‘

PackageReadyforSeIfCheck

PerformmedselfCheck (int
result, string resultmsg)

DeposnMoneyforShlpment
(bytes32 hash)

StartShipment()

Receiver

Computers & Industrial Engineering 136 (2019) 149-159

Alternative 1:
Wrong Pass
Phrase is provided
twice within 48
hours

Alternative 2:
Correct Pass
Phrase is provided
from the first time

! violationOccured (string msg,:
' violationType v, int value) |

TempertaureViolation

Refund()

Dselfdestruct

Temperature
Violation while
shipping

Fig. 8. Message sequence diagram with a temperature violation.

H. Hasan, et al. Computers & Industrial Engineering 136 (2019) 149-159

[vm] from:@x4b@...4d2db, to:browser/IoTContainer.sol:IoTContainer.De [petails
positMoneyforShipment(bytes32) oxefd...bcfb7, value:© wei, data:@x61
4...00000, © logs, hash:@xa7a...77d72

transact to browser/IoTContainer.sol:IoTContainer.DepositMoneyforShipment errored: V

M error: revert.
revert The transaction has been reverted to the initial state.

Debug the transaction to get more information.

Fig. 9. Error message when the receiver deposits money prior to self-check.

ne
{
“"topic": "8ef8f58c999d4a3cf753¢9a105ff485222F807¢26¢c1217a71
0c2f802d35352¢",
“event™: "DepositMoneyDone”,
logs “args”: [
"Money deposited and passphrase hash provided®,
"0x4b0897b0513fdc 7¢541b6d9d7¢929¢4e5364d2db"
)
)
)

Fig. 10. Log after calling DepositMoneyforShipment (bytes32) function (The full code of the smart contract is available at https://github.com/
smartcontract694/project.git).

sender_owner 0: address: 0x14723a0%acff6d2a60dcdf7aa4aff308fddc160c
receiver

receivedCode

passphrase 0: bytes32
Oxe9dd4fa294a0dde282d812321511c5d9112b363bb6216 1060740242211
d8e529

content 0: string: This container is shipping frozen food.
violation

ShipmentArrived

violationOccurred string msg, wint8 v, int256

ProvidePassphrase “Hello™

WWM?&;W& - transact (not payoble)] :

PerformmedSelfChe 4 =

d -
StartShippment

Fig. 11. Receiver entering a wrong passphrase.

157

https://github.com/smartcontract694/project.git
https://github.com/smartcontract694/project.git

H. Hasan, et al.

Fig.

"Hello

Computers & Industrial Engineering 136 (2019) 149-159

12. Event ReceiverAuthenticationFailure is triggered.

Fig. 13. Passphrase is correct and ReceiverAuthenticatedSuccessfully is triggered.

is provided from the first time. Fig. 8 shows a scenario when a tem-
perature violation has occurred.

5.2. Testing

We discuss the testing plan to demonstrate the correct functionality
of three features. First, to ensure the status of package is updated cor-
rectly with the shipment flow. Second, appropriate events are triggered
and logged in a logical sequence based on function calls. Third, the code
verifies the legitimate receiver using the passphrase. For testing in
Remix, three Ethereum addresses were used, each having 100 Ether as
initial balance.

State of the Package: We tested the correct change of the state
which is required prior to executing certain functions to ensure the
proper execution flow and sequence. For instance, if the receiver tries to
execute the DepositMoneyforShipment (bytes32) function before
the self-check was performed by the IoT-enabled shipment, an error
occurs as shown in Fig. 9. A similar error also occurs if any function is
executed by the wrong party. An error would show if the Depos-
itMoneyforShipment (bytes32) function was called by the IoT-
enabled shipment container instead of the receiver.

Order of Events and Logs. We tested the correct order and se-
quence of the events and logs. For example, if the
DepositMoneyforShipment (bytes32) function is executed suc-
cessfully, the log will have the message “Money deposited and pass-
phrase hash provided” as illustrated in Fig. 10. This message will only
be in the log, if the money deposited is equal to the shipment price
which was 10 Ether and if the receiver also entered the passphrase.
After the event was triggered, the address of the receiver would have 10
Ether less. It is also noted that the passphrase is of the type bytes32

and it should be entered as an array of one bytes while testing.
Passphrase Keccak256 Hash: The passphrase used while testing
the code was the keccak256 hash “Hello I am Receiver X” which
results an output hash of ‘0xe9dd4fa294a0d-
de282d8£232151£c5d9f12b363bb62£61d6074d2422£1d8e529’.
The legitimate receiver should enter the correct passphrase to be ha-
shed after the shipment arrives at the destination. This is done through
the function Providepassphrase (string). As mentioned earlier,
the receiver has 48 h to enter the right passphrase if it was missed from
the first time. As depicted in Fig. 11, the receiver will enter the pass-
phrase “Hello” instead of “Hello I am Receiver X” in the first at-
tempt. This will result in the event
AuthenticationFailure to be triggered as seen in Fig. 12. A
successful subsequent attempt within 48 h with the right passphrase as
a parameter to the function ProvidePassPhraseAfterTime
(string) will trigger the event
AuthenticatedSuccessfully with the message “Passphrase
matched successfully” shown in the logs, as depicted in Fig. 13.

Receiver-

Receiver-

6. Conclusions

The application of blockchain technology in supply chain and lo-
gistics has tremendous advantages in terms of product visibility,
tracking and process automation. In this paper, we propose a block-
chain-based solution for shipment supply chain management using
smart containers. Our proposed solution utilizes the features of smart
contracts in Ethereum blockchain to govern and manage the interaction
between the sender and receiver of the shipment. We provide details of
system interaction among the supply chain participants, and tested
various functionalities of the system using Remix IDE. Although our

H. Hasan, et al.

solution is focused on single echelon supply chain; the presented system
architecture, design, and code are generic enough and can be applied to
multi-echelon shipment management. The program code has been
made publicly available for academic, research and practice commu-
nity. As future work, we plan to implement a fully functional system
consisting of an IoT-enabled container equipped with Raspberry Pi
board connected to various sensors, and develop front-end DApps
(decentralized applications) and wallets for the sender and the receiver
to interact with the Ethereum smart contracts.

Acknowledgement

This publication is based upon work supported by the Khalifa
University of Science and Technology under Award No. CIRA-2019-
001.

References

Angeles, R. (2005). RFID technologies: Supply-chain applications and implementation
issues. Information Systems Management, 22(1), 51-65.

Bahga, A., & Madisetti, V. K. (2016). Blockchain platform for industrial internet of things.
Journal of Software Engineering and Applications, 9(10), 533.

Banerjee, A. (2018). Blockchain technology: supply chain insights from ERP. Advances in
computers: Vol. 111, (pp. 69-98). Elsevier.

Bocek, T., Rodrigues, B. B., Strasser, T., & Stiller, B. (2017). Blockchains everywhere-a
use-case of blockchains in the pharma supply-chain. 2017 IFIP/IEEE symposium on
integrated network and service management (IM) (pp. 772-777). IEEE.

Buterin, V. (2014). A next-generation smart contract and decentralized application
platform. White Paper.

Chou, P. H., Lee, C. T., Peng, Z. Y., Li, J. P, Lai, T. K., Chang, C. M., ... Lai, L. Y. (2013). A
Bluetooth-Smart insulating container for cold-chain logistics. 2013 IEEE 6th interna-
tional conference on service-oriented computing and applications (pp. 298-303). IEEE.

Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the internet
of things. IEEE Access, 4, 2292-2303.

Hubh, S., Cho, S., & Kim, S. (2017). Managing IoT devices using blockchain platform. 2017
19th international conference on advanced communication technology (ICACT) (pp. 464—
467). IEEE.

IBM Blockchain, Available at https://www.ibm.com/blockchain/platform/ [Accessed:
Oct. 29, 2017].

Jayaraman, R., Salah, K., & King, N. (2019). Improving opportunities in healthcare supply
chain processes via the internet of things and blockchain technology. International
Journal of Healthcare Information Systems and Informatics (IJHISD), 14(2), 49-65.

Computers & Industrial Engineering 136 (2019) 149-159

Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open
challenges. Future Generation Computer Systems, 82, 395-411.

Kim, H. M., & Laskowski, M. (2018). Toward an ontology-driven blockchain design for
supply-chain provenance. Intelligent Systems in Accounting, Finance and Management,
25(1), 18-27.

Ko, D., Kwak, Y., Choi, D., & Song, S. (2015). Design of cold chain application framework
(CCAF) based on IOT and cloud. 2015 8th international conference on u-and e-service,
science and technology (UNESST) (pp. 11-13). IEEE.

Lee, D., & Park, J. (2008). RFID-based traceability in the supply chain. Industrial
Management & Data Systems, 108(6), 713-725.

Levinson, M. (2016). The box: How the shipping container made the world smaller and the
world economy bigger-with a new chapter by the author. Princeton University Press.

Li, F., & Chen, Z. (2011). Brief analysis of application of RFID in pharmaceutical cold-
chain temperature monitoring system. Proceedings 2011 international conference on
transportation, mechanical, and electrical engineering (TMEE) (pp. 2418-2420). IEEE.

Lin, L. C. (2009). An integrated framework for the development of radio frequency
identification technology in the logistics and supply chain management. Computers &
Industrial Engineering, 57(3), 832-842.

Mackey, T. K., & Nayyar, G. (2017). A review of existing and emerging digital technol-
ogies to combat the global trade in fake medicines. Expert Opinion on Drug Safety,
16(5), 587-602.

Musa, A., Gunasekaran, A., & Yusuf, Y. (2014). Supply chain product visibility: Methods,
systems and impacts. Expert Systems with Applications, 41(1), 176-194.

StaTwig: Improving food and vaccines distribution systems more efficiently through
blockchain- UNICEF Innovations (2019). Available at: https://www.unicef.org/
innovation/stories/statwig-improving-food-and-vaccines-distribution-systems-more-
efficiently-through. [Accessed: May. 29, 2019].

Tian, F. (2016). An agri-food supply chain traceability system for China based on RFID &
blockchain technology. 2016 13th international conference on service systems and ser-
vice management (ICSSSM) (pp. 1-6). IEEE.

Tian, F. (2017). A supply chain traceability system for food safety based on HACCP,
blockchain & Internet of things. 2017 International conference on service systems and
service management (pp. 1-6). IEEE.

Toyoda, K., Mathiopoulos, P. T., Sasase, I., & Ohtsuki, T. (2017). A novel blockchain-
based product ownership management system (POMS) for anti-counterfeits in the
post supply chain. IEEE Access, 5, 17465-17477.

Urien, P., & Piramuthu, S. (2013). Internet Smart Card for perishable food cold supply
chain. 2013 IEEE Eighth international conference on intelligent sensors, sensor networks
and information processing (pp. 83-88). IEEE.

Yue, X., Wang, H., Jin, D., Li, M., & Jiang, W. (2016). Healthcare data gateways: Found
healthcare intelligence on blockchain with novel privacy risk control. Journal of
medical Systems, 40(10), 218.

Zhao, J. L., Fan, S., & Yan, J. (2016). Overview of business innovations and research
opportunities in blockchain and introduction to the special issue.

Zobel, A. (2016). The complete journey clinical trial supply. International Clinical Trials,
14-16.

http://refhub.elsevier.com/S0360-8352(19)30414-0/h0005
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0005
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0010
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0010
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0015
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0015
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0020
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0020
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0020
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0025
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0025
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0030
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0030
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0030
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0035
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0035
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0040
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0040
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0040
https://www.ibm.com/blockchain/platform/
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0050
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0050
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0050
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0055
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0055
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0060
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0060
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0060
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0065
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0065
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0065
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0070
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0070
http://refhub.elsevier.com/S0360-8352(19)30414-0/h9000
http://refhub.elsevier.com/S0360-8352(19)30414-0/h9000
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0075
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0075
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0075
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0080
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0080
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0080
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0085
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0085
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0085
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0090
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0090
https://www.unicef.org/innovation/stories/statwig-improving-food-and-vaccines-distribution-systems-more-efficiently-through
https://www.unicef.org/innovation/stories/statwig-improving-food-and-vaccines-distribution-systems-more-efficiently-through
https://www.unicef.org/innovation/stories/statwig-improving-food-and-vaccines-distribution-systems-more-efficiently-through
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0100
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0100
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0100
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0105
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0105
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0105
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0110
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0110
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0110
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0115
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0115
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0115
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0120
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0120
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0120
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0130
http://refhub.elsevier.com/S0360-8352(19)30414-0/h0130

	Smart contract-based approach for efficient shipment management
	Introduction
	Related literature
	Supply chain management using RFID
	Supply chain and cold chain management using blockchain

	Proposed solution for shipment management
	System overview
	System design
	Sender and receiver
	IoT-enabled container
	Smart contract

	Potential business application to vaccine supply chain
	Implementation and testing
	Implementation details
	Testing

	Conclusions
	Acknowledgement
	References

