
From digital currencies to digital
finance: the case for a smart
financial contract standard

Willi Brammertz
ACTUS Users Association, Rockville, Maryland, USA and
Ariadne Business Analytics, Naenikon, Switzerland, and

Allan I. Mendelowitz
ACTUS Financial Research Foundation, Rockville, Maryland, USA

Abstract
Purpose – This paper aims to demonstrate the importance of a cash flow generating standard for individual
financial contract level data and the ability to create such a standard.

Design/methodology/approach – The authors analyze the importance for such a standard of software
that turns natural language contracts into cash flow generating algorithms; a data dictionary that
standardizes contract terms; and access to variables that represent the state of the world (e.g. market risk,
counterparty risk, etc.) that affect contractual obligations.

Findings – The ability to realize benefits from the use of such a contract level algorithmic standard depends
on the following: making the standard’s software open source; fully testing the software to have complete
confidence in its accuracy; and enabling the software to use of a wide range of models of various sources of
risk (market, credit and behavior risk) to support forward-looking analysis. Such a standard would solve the
disconnect that exists in financial firms between the representation of financial contracts for transaction
processing and analysis. The ACTUS Financial Research Foundation is building, testing and making
available such a standard that represents almost all financial contracts extant in markets.

Practical implications – The adoption of such a standard would reduce the costs of operations of
financial firms, provide the computational infrastructure for more effective regulatory oversight, reduce
regulatory reporting costs and improve financial market transparency. It would also enable the assessment of
systemic risk by directly quantifying the interconnectedness of firms.

Originality/value – This is a new approach to financial analytics that clearly separates the deterministic
components of finance, which can be standardized from the stochastic elements that cannot be standardized.

Keywords Standardization, Fintech, Block-Chain, Complete contracts, Smart contract,
Smart financial contracts

Paper type Conceptual paper

Uniqueness of financial contracts
The role of contracts in economics has recently received some high-profile attention. The
Nobel Memorial Prize in Economics was awarded to two distinguished economists for
parsing the challenges of contracts in a market economy[1]. In addition, the rapidly
growing interest in finance and information technology – under such rubrics “Fintech”
and “Block-Chain” – has focused great attention on financial contracts in general, and
“smart contracts”[2] in particular. This attention is not merely an academic interest; it is a
practical interest of the finance industry as it tries to develop better ways to organize and
manage the business of finance.

JRF
19,1

76

Received 3 February 2017
Revised 24May 2017
Accepted 24 September 2017

The Journal of Risk Finance
Vol. 19 No. 1, 2018
pp. 76-92
© EmeraldPublishingLimited
1526-5943
DOI 10.1108/JRF-02-2017-0025

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1526-5943.htm

http://dx.doi.org/10.1108/JRF-02-2017-0025

In the rush to explore how to take advantage of the potential of Fintech, there has been
less attention paid to what is needed in the way of the foundational elements. Block-Chain
has received enthusiastic attention. However, the only sustained application of the
technology has been for single payment transactions in a crypto currency. It has attracted
traders desiring access to a payments mechanism free from the legal and regulatory
constraints intended to prevent money laundering; avoid restrictions on financial transfers
to the targets of foreign policy sanctions; and make it harder to trade in elicit goods and
services. The fact that most financial contracts are long-lived multi-payment obligations
means that the real-world experience with Block-Chain and Bitcoin has little to say about
how to advance Fintech.

Contracts are critical elements of the operation of a market economy. This observation is
all the more true in in finance. What has been missing in these discussions of Fintech and
Block-Chain has been the recognition of the uniqueness of the financial contract within the
broader world of economic contracts. Understanding this uniqueness is critical to
understanding how to represent financial contracts in real world applications of Fintech.
Furthermore, understanding this uniqueness is critical to being able to realize the promised
benefits of Fintech.

The uniqueness of financial contracts starts with the nature of what is being exchanged
under the contracts and goes on from there:

� Most economic contracts consist of an obligation to pay money in exchange for the
receipt of goods and/or services. Financial contracts are agreements to exchange
cash flows on the part of all the counterparties to a contract without the exchange of
any goods or services.

� Cash flows are, in essence, numbers. Such numbers can precisely represent the
payment obligations contained in a financial contract.

� Financial contracts typically require the payment of a series of cash-flow
obligations that are most precisely represented by a mathematical expression rather
than the words of a natural language contract. In fact, financial contracts – the
exchange of cash flows – are the only contracts that can be perfectly represented
mathematically.

� Because the obligations of financial contracts can be represented mathematically
with greater precision than natural language contracts, such contracts are well
suited to be represented by self-executing software.

This uniqueness should have enabled the financial industry to be in the forefront with
regard to automation when compared to other industries. The reality however is different.

A closer look at the financial contract
“Judex non calculat” is an old roman saying, which can be roughly translated as “Lawyers
do not calculate”[3].

This aversion to mathematics may be one reason financial contracts are written in
natural language. Another reason is that contracts have other terms and conditions that are
not directly related to calculating cash flow obligations and require their representation in
natural language. In any event, the current state of affairs is that in financial contracts, clear
mathematical expressions that define the exchange of cash are turned into words.

Some of the terms, the “essentialia negotii” are expressed in numbers such as the notional
amount exchanged, the interest rate, term of the agreement and amortization of principal.

From digital
currencies to

digital finance

77

They are the parameters of formulas hidden in the text. However, at the end of the day, they
must be ultimately interpreted as a numerical obligation.

In the following, we will argue that the text of a financial contract that relates directly to
computing the exchange of cash flows should be represented by well-defined and openly
published algorithms. However, there are other aspects of financial contracts that still need
to be represented in natural language. In cases of technical events of default or delayed
payment or nonpayment of obligations, human judgment is critical to determining how best
to respond. For example, in the case of a debt instrument, the natural language terms of a
contract would clearly define rights and obligations in a default. However, what actually
transpires requires human interaction and is left to the judgment of the creditor. Once an
obligor falls behind in payment obligations, the resolution of the default can involve
workout negotiations or litigation, with lawyers and judges playing central roles in the
ultimate resolution, a process not coverable by mere algorithms.

There is much more that can be said about a credit default event. Algorithms can be used
to provide analytical support for the resolution of a default. However, the length of this
article does not allow us to dwell on this issue, and we leave this topic to another article. In
this paper, we focus solely on the exchange of cash that, in the modern world, covers the
overwhelmingmajority of the real-world financial transactions.

How financial institutions work in practice
A financial contract is an agreement to exchange of cash flows that can be expressed
mathematically. However, legal contracts have always been expressed in natural language.
The reliance on natural langue has obscured the fundamental mathematical nature of the
relationship, which has hadmajor consequences for the financial sector.

To understand the nature of the problem, we present a simplified organizational model of
a financial institution, using a typical bank for our example.

Such a bank has two key functions or levels – a transaction processing level (TPL) and
an analytic level (AL):

(1) TPL: It computes on a daily basis both the bank’s payment obligations and
expected contractual receipts for that day. It is responsible for maintaining the
records of what is added to and runs off of the balance sheet on a day-by-day basis
and any required payments during the life of the asset or liability. These two
functions are generally referred to as deal acquisition and deal processing. For
example, a mortgage is made by the bank and maintained on its balance sheet.
After it is created, it is entered into the transaction processing systems (TPS) that
handles all the payments of the transaction till maturity date.

(2) AL: Bank management is essentially the management of numbers, and the analytic
level corresponds to the bank management level. Bank management can be
roughly grouped into the three views of the bank: risk management, finance and
regulatory reporting.

Financial analysis means analysis of the contracts maintained in the TPS. Therefore, it
should start with the same cash-flows obligations maintained and managed by the TPL.
This perspective gives direct insight into the value of smart financial contracts for more
efficient and higher quality bank operations. Because both the TPL and the AL start
fulfilling their tasks using the same cash flow generated by the individual financial
contracts, the same smart financial contracts – data representing the contract terms and
algorithms – can be used by both the TPL and the AL. The reality, however, is far different
from this ideal solution.

JRF
19,1

78

Transaction processing and financial contracts
On the TPL, the algorithmic nature of the financial contract is well understood and
exploited. The implementation of fully automated transaction processing systems started
when the rapid growth in financial activities overwhelmed the ability of banks to manually
process transactions. This happenedmainly from the 1970s to the 1990s.

Today, almost every financial contract is represented by machine-readable code.
Contracts are entered into the system at their origination. All payments are automatically
calculated and often automatically executed. Straight through processing has been achieved
in this process to a far extent.

Many practitioners consider the machine representation of the contract as the true
contract. The paper version has hardly any significance as long as the contract is in good
standing. This fact alone provides strong support for our view of the algorithmic nature of
financial contracts. TPS are, in essence, cash-flow generators (CFLGs).

A CFLG contains certain functions that calculate interest, principal, new rates if the
contract includes a variable interest rate, etc. It needs as input the contract terms with which
it can generate all future cash flows that include the date, amount and currency for each
computed payment obligation.

If the future cash flow obligations depend on changes in the market, such as the market
rate needing to reset the interest rate on the variable rate of a swap, a link to these conditions
must exist to calculate the new rate.

We call these market terms risk factors as they can change at any time in the future in an
unforeseen manner. Market risk factors are interest rates and foreign exchange (FX) rates.
However, from a forward-looking analytical perspective risk factors also include credit risk
and behavioral risk:

In short : TPS ¼¼ CFLG contract terms; risk factorsð Þ (1)

The “==” denotes “corresponds to”.
If a smart contract is self-executing software that faithfully generates the cash flow

obligations of the natural language contract, we can argue that banks have been using smart
financial contracts since the 1970s.

The analytic level: how it should be
The AL analyzes the contracts that reside in the TPS. In addition, the AL analyzes the
impact of the risk factors on the actual bank position and possible future or planned
business.

It is a generally true proposition that any financial analysis (FA) depends on the expected
future cash flow.

FAi ¼ fi E cfl½ �ð Þwhere the superscript i refers to the type of analysis (2)

The analysis result i could be a liquidity gap report, a sensitivity analysis, an FRS
accounting statement, a liquidity coverage ratio (LCR) calculation, etc.

It would seem logical that a bank would use the same CFLG functions for the analysis it
uses for transaction processing. After all, the principal difference between transaction
processing and analysis is the time dimension and its implications. Transaction processing
is done one day at a time using observed risk factors on that day to compute payment
obligations. Such current risk factors as interest and FX rates can be retrieved from
Bloomberg or Reuters.

From digital
currencies to

digital finance

79

Even though the AL should theoretically start with the same algorithms as the TPL,
analysis is a more complex challenge. Expected future cash flow depends on the unknown
future state of the risk factors, which are market (interest rates and FX rates), counterparty
(credit) risk and behavior risk (i.e. prepayment risk). Because analysis is forward-looking,
AL needs forecasted future market conditions and forecasted states of the other risk factors
including future business developments. In addition, the analytical tasks need the capability
to derive from the expected cash-flows basic analysis such as liquidity, income and value for
the balance sheet, plus additional functionality for specific reports. Additionally, the
analytical engine needs the ability to sort and aggregate by any desired criterion
the granular level expected future cash flows to gain greater insight into the condition of the
business.

Taking this into account we can extend equation (1) as follows:

FAi ¼ fai CFLG contract terms; risk factors; E risk factors½ �� �
; Fi

� ��
(3)

fai nests the CFLG function with expected risk factors and the Fi function. The Fi function
is a special operator that produces the specific result FAi such as liquidity gaps, balance
sheets and so on.

The relationship between CFLG and the expected risk factors in the AL space is the
same relationship as betweenCLFG and the current risk factors in the TPL space. Also, the
construction of the expected risk factors is an entirely orthogonal element that is handled
outside the CFLG and supplied the same way as the observed risk factors that are used for
transaction processing.

The Fi function could for example be an LCR operator or any other operator. The Fi

function always operates on the expected cash-flows. As it operates on the results only, it is
independent of theCFLG function without any loop back.

We, therefore, can conclude that the same CFLG can be used within TPS and within any
FAi, save that the CFLG function must be able to operate with the forecasted variables for
future periods.

From equation (3), we can also see how the deterministic part of finance interacts with the
stochastic part. Stochastic elements enter the computations solely through the states of the
future unknown risk factors that can be represented by stochastic models. The algorithms
that represent the legal contractual obligations are the deterministic component of the
financial world.

From this, we can see that there should be no essential difference between how contracts
are represented at the TPL and the AL.

This, however, is not the case in practice.

The analytic level: how it is in reality
In practice, we find a wide chasm between TPL andAL in all financial institutions.

The reason why AL <> TPL lies in the unstandardized nature of the TPSs. Despite the
fact that there is only a very limited number of different financial transactions in terms of
cash-flow patterns, there are thousands of different TPSs out there. There are even multiple
TPSs within a single bank that handle the same transactions. In addition, TPSs are
generally highly parameterized, which means that the same system can produce very
different patterns depending on the given instance.

This means that the same cash flow pattern is generated by many different TPSs in
different ways. Not only do they have different programming languages and different

JRF
19,1

80

names and meanings for the various contract terms but they also use very different logic.
Each system has its own logic and algorithms. Instead of having a unique CFLG for a
specific cash flow pattern, as in equation (1), we have multiple versions of them.

Despite these differences, the power of the financial logic in the contracts yields results
that are considered to be “good enough” for running a bank. The final numbers generated by
the different TPSs are not identical, but they are close enough. The differences are a
nuisance, but small enough in magnitude to be settled amicably between the counterparties.
In the real world business, the differences are subjected to a “tolerance” test. For example, if
the difference in the computations of the two counterparties is within tolerance (i.e. $50 or
$25) the difference is acceptable. However small the differences are, they do impose
significant reconciliation costs on the banks.

While this unstandardized nature is a nuisance to the TPL, it becomes a quagmire on the
AL.

A necessary condition on the AL is the ability to aggregate the results of all financial
contracts from all TPSs.

From equation (2), it is clear that all these results depend on expected cash flows. From
equation (3), however, we can see that expected cash flows depend on the CFLG including
forecasted or expected risk factors.

Risk and financial reports, and, increasingly, even regulatory reports, depend on
expected risk factors. Stress tests subject financial institutions to specific stress scenarios,
such as a sharp rise in the yield curve. These expected market conditions must be applied
consistently across all financial contracts. For this reason, it is not possible to use
precalculated results from the CFLG of the TPS. It is necessary to calculate the impact of
the different risk scenarios at the AL level.

While it is already difficult to reconcile different attributes such as maturity date,
principal and interest rate, the problem becomes insurmountable when we have to reconcile
different algorithms based on different logic.

When trying to build analysis systems, banks, therefore, faced a serious problem in
dealing with the chaos created by the lack of standardization in their TPSs. In an attempt to
resolve this problem, the banks created central data stores or data warehouses (DW).
Significant resources were devoted to these initiatives. However, they did not solve the
problem.

The reason DWs do not solve the problem is that the only data that was moved to the
DWs were the terms of financial contracts: principal, interest rate, maturity date, etc.
The algorithms used by the TPS to generate the cash flow obligations were left behind and
were never standardized. Consequently, while the analysis systems were able to retrieve the
terms of individual contracts from the DWs, they had to recreate the wheel by building their
own algorithmic representations of the contractual obligations within the AL.

The wheel is reinvented time and again. Almost each little analysis has its own CFLG
function. In this architecture, we end up with myriad CFLG functions on the analytic level
producing contradictory results and incurring huge reconciliation cost.

Solving the problem
Cash flow generating standard
The problem can only be overcome if we build a system based on standardCFLG functions
for all individual financial contracts. We can then map the existing real world contracts into
this CFLG standard. Because the starting point for the analysis is at the level of the
individual financial contract, the AL has maximum flexibility. While there is no way to
aggregate different algorithms – even if they lead to same final results – due to the complex

From digital
currencies to

digital finance

81

nature of algorithms, this can be overcome with standard algorithms. If standard CFLG
functions are used to produce the expected cash flows, all derived results can be safely
aggregated. This is the necessary basis for BCBS 239 and for any efficient high-quality
analysis[4].

For each relevant and known cash flow pattern, we need a specific version of CFLG,
which we can call CFLGi. The “i” represents the index for a specific cash flow pattern. The
standard must be published as an open source code to assure accuracy and a wide spread
confidence in the code. These functions then work principally as APIs. This is best
explained by a simple example.

Let us call CFLG1 principal at maturity (PAM). Most bonds follow for example such a
PAM pattern. A simple fixed rate PAM needs the following fields to be defined: notional,
initial exchange date, maturity date, interest payment cycles and interest rate. With those
terms and the PAM-specific CFLG algorithm, we can precisely generate the cash flow
obligations to be used in transaction processing. In addition, by modeling the stochastic
market risk factors, we can also undertake the full range of forward-looking analyses with
respect to value, liquidity and income.

The following graph represents the cash flow pattern of a simple fixed-interest rate
PAM. The solid red lines are the principal payments. The dotted green lines represent the
accrual of interest between interest payments. The solid green lines represent the actual
interest payment (Figure 1).

This approach sounds good in theory. However, the PAM represents a very simple set of
contractual obligations, and at first blush, it is not clear how representative it is of the
proposed solution. There are thousands or even tens of thousands of different complex
financial products. How is it possible to come up with a manageable standard to represent so
many different types of contracts?

The astonishing truth is that this complexity is artificial. The diversity is superficial,
created by overlapping concepts such as marketing and legal considerations. By focusing on
the underlying cash-flow patterns, the system collapses into a manageable number of

Figure 1.
Events and cash-
flows of a PAM
contract

JRF
19,1

82

standard CFLGi algorithms. It will take less than three dozen CFLGi algorithms to
represent almost all financial contracts. We accept that there will be a small number of rare
exotic instruments that are too costly to be standardized, but they will never be a significant
part of the market. As soon as an exotic instrument becomes sufficiently significant, the
standard has to be expanded to include it. This, however, happens rarely[5].

The breadth of the coverage of the PAM algorithm helps make the case that a
manageable number of CFLG algorithms are needed. In addition to a simple fixed rate
instrument, the PAM algorithm faithfully represents the cash flow obligations of an
adjustable rate instrument, a zero-coupon bond, obligations in foreign currencies and
instruments with imbedded optionality. Furthermore, the PAM algorithm is the building
block for the SWAPS algorithm. A simple plain vanilla interest rate swap has two legs: one
is a PAM with a fixed-rate interest obligation; the second is a PAM with a defined
adjustable-rate interest obligation. The same approach can be used for basis swaps and for
swaps involving foreign currencies.

A second example involves two financial products that banks see as entirely different
products and are sold by different parts of a bank. One such instrument is an annuity sold
by the retirement/investment silo of a bank. Such an instrument generates a repayment
obligation that includes both interest and principle in each payment. Such a contract is
represented by the annuity (ANN) CFLG algorithm. However, as it turns out, the ANN
algorithm also faithfully generates the cash flow payments of a self-amortizing mortgage.
Both an annuity and a self-amortizingmortgage have exactly the same cash flow pattern.

The foundation for aCFLG standard includes the following:
� identifies and categorizes observed patterns of cfl exchange (CFLGi);
� builds a ata dictionary (DD) with the contract terms that are needed to run specific

CFLGi algorithms, where the DD consists of the inputs for the algorithms and
includes terms such as notional, contract date, payment cycles, interest rate
determinants, day-count method and business-day conventions;

� programs the software for a full set of algorithms that precisely generate the various
specific cash flow patterns that underlie the standard; and

� makes the code for each CFLGi available as open source code so that all may use it.

ACTUS: the algorithmic contract types unified standard
The ACTUS Financial Research Foundation is building exactly the type of CLFG algorithmic
standard discussed in this paper. In fact, the effort has already programmed 18 contract types
((CTs), which is the ACTUS terminology for the standard’s CFLG algorithms). The completed
CTs represent close to 90 per cent of the contracts outstanding in the world of banking. More
details about this effort can be found at the ACTUSwebsite[6].

The following graph lays out where the ACTUS CTs’ fit into an analytical model for
better and a more efficient bank data management and analysis (Figure 2).

The system
The center of the system is the financial contract represented by the terms of the contract and
the corresponding CFLG functions that interact with the risk factors. The output of the function
are first the contract events that include any happening during the life of a contract, such as a
fixing of an interest rate, a payment of interest or principal and an option fixing. From the
contract events, it is possible to derive expected cash flows, from which it is possible to derive

From digital
currencies to

digital finance

83

what we could call the primitive analytical results of finance, which are liquidity, income and
value. The system provides time-dependent state variables for each of them.

What distinguishes the ACTUS approach is that ACTUS is the only standard under
development that provides both the data (contract terms) and the algorithms needed to
generate cash flow obligations. Furthermore, the standard is open source and freely available to
any interested user, including practitioners, risk managers regulators and academics. The open
source nature of the ACTUS algorithms will help insure that the software will be fully tested
and deserving of complete confidence when used. In a world of smart contracts, “code is law”.
The most important lesson learned by the unfortunate experience of Ethereumwith the DAO is
that any smart contract used for any level of business has to be fully tested and deserving of
the highest level of confidence in the accuracy of the code (Coppola, 2016). On the basis of the
Ethereum experience, it is clear that bespoke contracts cannot meet this standard. Bespoke
contracts actually perpetuate the current situation or make it even worse.

ACTUS proposes:
� build on the specific nature of financial contracts, which is logical/mathematical in

its core;
� recognize that the observed patterns of cash-flow exchange are very limited for

almost all financial contracts;
� build a fixed set of well-defined and tested CFLGi functions that represent almost

all financial contracts extant in the financial sector; and
� instead of offering a Turing complete language, as proposed within the Block-Chain

movement, there is a need for APIs, where input and output is clearly defined and
where the expected cash flows can be thoroughly tested.

The financial market needs a well-tested and understood framework that covers close to 100
per cent of the observed cases. This can be achieved with less than three dozen cash flow
patterns.

Figure 2.
The system

JRF
19,1

84

Discovery, not an invention
In the nineteenth century, each producer of screws and bolts had its own metrics.
Consequently, it was difficult to know how much pressure a screw and bolt assembly could
hold. The problem that arose from this state of affairs is that steam engines could not be
relied on to operate safely and not blow up with use. The solution was the first US
engineering standard, which established the design and performance capabilities of nuts
and bolts[7]. This standard was an invention that transformed an industry.

In banking, however, we see a different situation. Bankers have followed implicit
standards for a very long time. If we go out into the world of finance and look at actual
transactions, we find the same cash flow patterns again and again. However, these implicit
standards were never turned into fully developed, transparent standards. Therefore, a
standard such as ACTUS is not an invention but a discovery. ACTUS just represents these
patterns in a clear and efficient manner in software.

Actually, more than 80 per cent of all deals done fit into a half a dozen patterns.
The existence of implicit standards can be illustrated with a simple hypothetical

example. Let us assume that two bank enter a long-term contract for a loan. For one of the
counterparties, it is an asset and for the other, it is a liability. The cash-outflow for one is a
cash-inflow for the other. Other than the designation of the contract as an asset or a liability
the contract is the same for both parties. Each bank then enters the contract into its
transaction processing system, which almost certainly implies two different systems. The
only information entered into the transaction processing systems are the terms of the
contract such as principal, interest rate and maturity date. No coding is necessary to
represent the contract because the required algorithms are already in the transaction
processing system. With this information, the transaction processing systems are able to
generate the cash flow obligations of each party.

Both systems represent the deal in their own way using different software, algorithmic
logic and data. Both calculate the expected cash flows that need to be exchanged. The
biggest difference between what is produced by the two systems is the sign of any particular
cash flow.

If the two TPSs are entirely different systems, how can they get the same result? The
answer rests with the implicit standards in finance. This means that there is sufficient
knowledge in the industry to enable the two systems built by different programmers and
implementing different instructions to come up with essentially the same answer. In
German, there is a nice term for this: Usanz. This term of art might be translated into
English as “the common knowledge of the guild”.

We have said that the two systems produce the same results, save for the sign. This is
not 100 per cent correct. Actually, typically, they differ slightly. There is sufficient common
knowledge in the industry to get almost the same result, but not exactly the same number.
These differences are typically small and are usually amicably resolved. They rarely (if
ever) are a reason to go to court. Actually, banks have tolerance limits for such differences.
For example, one large bank used to have a tolerance limit on the difference of $50.00, which
has more recently been reduced to $25.00.

Although transaction-processing differences are a big nuisance, these differences caused
by the different algorithms are not the reason we are promoting a standard (although this
alone might be a good enough reason). The more serious problem exists at the analytic level.
This is the huge problem that needs to be solved. The ACTUS standard offers the solution,
and the growing disruptive potential of Fintech could create sufficient incentive for legacy
financial institutions to make the needed efforts to realize the benefits offered by this
standard.

From digital
currencies to

digital finance

85

Implementation of a system
What about the implementation costs? If this is such a powerful solution, why has it not
been implemented a long time ago? Could there be some barriers to implementation?

Wewill discuss the following five potential implementation barriers:
(1) technological challenge;
(2) adoption of a standard;
(3) universe of financial products;
(4) disruption of the existing (and functioning) production chain; and
(5) implementation costs.

Technological challenge
A faithful implementation of this approach requires that each financial contract is
represented individually in the standard.

There could be as many as a few billion financial contracts extant in the world’s financial
markets. Each bank has between a few hundred thousand and few dozens of millions of
financial contracts. Could this pose a problem?

As a system already exists on the TPS level (although non-standardized), we have proof
that it works on that level. Performance measurements of the ACTUS standard are highly
promising. They indicate that the performance is comparable to the current top performing
risk systems. Within a single institution, it will not pose a bigger challenge than the current
systems. Actually, the challenge should be seen as less daunting as the same results can be
used in many different reports, which with current systems are produced in redundant
parallel systems.

On the systemic level, the analytic challenge is bigger owing to the large number of
financial contracts and the many scenarios (expected risk factors) that need to be calculated.
Monte Carlo simulations, which produce many scenarios, pose an even greater challenge.
However, other scientific endeavors face comparable challenges and have overcome them.
For example, modern weather forecasting uses a complex algorithmic representation of the
weather patterns for the entire globe, which is continuously fed with new data from a large
number of observations taken on land, at sea, in the air and from satellites. High
performance computing has been up to the task of running such large and complex systems.
Similarly, the particle physics experiments at the Large Hadron Collider generate massive
amounts of data and, to distribute it, use a significant portion of internet’s bandwidth. More
than a thousand particle physicists analyze the data.

When compared to alternative big science endeavors such as the Super Hadron Collider
and modern weather forecasting, simulation of the financial sector does not pose a bigger or
more challenging problem. Preliminary tests indicate that the modeling of the financial
sector could be less demanding than weather forecasting. If we consider the financial sector
at least as important as forecasting the weather, the required IT infrastructure is not an
insurmountable hurtle.

Adoption of a standard
Establishing a standard is only the first step in realizing its benefits. Ultimately, widespread
adoption and use of the standard is essential. While ACTUS is active in standard setting
bodies, such as the RMG of ISO 20022, broad adoptionmust come from industry.

Some in the industry argue against such a standard because it enhances transparency:
financial firms have profited from the opacity of financial products. An adoption of a

JRF
19,1

86

standard such as ACTUS has the potential to help level the playing field between the sell
side and the buy side. We believe that support for maintaining opacity is waning. With the
onslaught of Fintech, many bankers are weighting the costs of the absence of such a
standard to be much higher than the advantages of opacity.

The fact that ACTUS did not invent such a standard but merely discovered it is another
reason for financial firms to support its adoption. The standard replicates what banks are
doing now with an excessively costly and imperfect implementation. Adoption of the
standard will reduce the cost of operation on the both the TPS and analytic levels.

Creating a complete set of cash-flow generators.
Looking at the universe of financial products, the number of CFLGi patterns appears, at

first glance, as if it could be very large. However, when looking past the large number of
different financial products created in response to marketing, legal and other considerations,
the picture is very different. If we focus exclusively on the cash-flow exchange patterns, the
number of requiredCFLGis shrinks dramatically.

As much as 80 per cent of all existing financial contracts might be represented by merely
half a dozen patterns. Less than three dozen patterns or CFLGis are needed to represent
virtually all-existing financial contracts, including instruments commonly referred to as
exotic options (Figure 3).

Appendix explains the meanings of the abbreviated terms that ACTUS gives to the
contract types referenced in the diagram above.

Only a small number of highly exotic financial contracts will not be included in the
ACTUS standard. The solution for these marginal contracts is to represent them either by
bespoke code or to approximate those using existing contract types. In the event that such
highly exotic contracts become important in the market, the ACTUS standard will be
extended to include coverage of themwith new contract types.

How does ACTUS handle the perceived complexity of some financial instruments? The
ACTUS standard differentiates between the deterministic and the stochastic. The ACTUS
contract types represent the deterministic, clearly understood legal requirements of a

Figure 3.
Overview contract

types

From digital
currencies to

digital finance

87

contract with respect to cash flows and payoff obligations. The calculation of required cash
flows or payoffs is relatively straight forward, even for exotic instruments, if the state of the
risk factors is known and the link between the risk factors and the contracts is defined. For
example, calculating the payoff of an option is not complex: Pay the difference between the
market price and the strike price on the exercise date.

Complexity enters the picture with the interaction between contractual obligations and
risk factors, such as market variables. There are different levels of complexity associated
with such interactions. For example, interest rates interact with contracts in a well-defined
manner when calculating interest payments. However, the combination of behavior
and market risks adds an additional level of complexity to other interactions. A standard
such as ACTUS should provide the computational infrastructure for such calculations.

Finally, modeling of the risk factors themselves is also necessary for financial analysis.
However, the inherently stochastic nature of risk factors does not allow standardization.
Therefore, risk factors are beyond the boundaries of what is included in ACTUS. Modeling
the risk factors is a task that is the responsibility of analysts, such as risk managers and
researchers.

Disruption of the existing production line
The financial sector – banks, insurers, wealth managers and so on – are going concerns.
Their TPSs are critical to smoothly running bank operations. They are, in effect, the factory
floors of finance. They function well enough to make the bank management reluctant to
consider attempting to replace them with new systems, even though they are not as good as
they could be.

Consequently, it is not likely that the first implementation of the ACTUS standard will be
in transaction processing, irrespective of how well it is developed and the level of future
benefits that it promises.

At the AL, the problems are far greater than at the TPL. There is a minimally disruptive
way of gaining the benefits for the AL made available by the use of a standard such as
ACTUS. The solution is to focus the first implementation efforts on expanding the content
and utility of the intermediate data stores or DW. We would give precise definitions to what
is stored in the DW for eachCFLGi using the data dictionary of the ACTUS standard. From
a technological viewpoint, such a DW would look very similar to existing DWs. The critical
difference is that the DW data would fully support the use of a CFLG standard in all
applications. Data would be organized in the DW according to the published algorithmic
standard, including thorough consistency checks. All analysis can be done using the
contract terms in the DW and the algorithmic standard. This approach is non-disruptive and
offers consistent standardized support for all analytic tasks.

Over time, a likely scenario is that the TPS will gravitate to using the CFLG¨s for
transaction processing as it will significantly reduce maintenance costs and eliminate the
need for costly reconciliation.

Once both TPSs and the AL adopt the standard, the distinction between the two levels
would disappear. There would be a single system-wide representation of the contract-based
exchange of cash-flows. The published algorithms and the contract attributes would
constitute the contract and the same terms, and algorithms would be used for any
analytics – only the expected risk factors will differ.

Cost of implementation
The main cost of such an exercise – possibly 80 per cent – is the data interface between the
contract in the existing TPS and the intermediate data layer (DW).

JRF
19,1

88

This exercise is comparable to the introduction of an enterprise risk system or an asset
and liability management system. Banks incur such costs and repeat such exercises at
regular intervals. Even the introduction of a specific regulatory requirement such as
comprehensive capital analysis and reviewmight trigger a similar effort.

If a standard such as the one we propose is not adopted, banks will continue to incur such
costs on regular intervals, resulting in high operating, regulatory compliance and risk
management costs: a burden that will only continue to grow. The implementation of a
standard such as our proposal would be the “last great mapping”.

As a consequence, the cost of operations of financial institutions would drop
dramatically, possibly to a sufficient level to enable legacy institutions to compete in the
Fintech space.

The importance of a smart financial contract standard for Block-Chains.
Smart financial contracts are a necessary innovation to realize significant advances

in the financial sector, independent of the technology applied. However, with respect to
Block-Chain technology and other distributed ledgers implementations, a powerful
standard such as ACTUS is even more important. Smart contracts will only be trusted
if they rely on a smart contract standard that is openly published, fully understood and
rigorously tested.

The alternative to a smart contract standard is a Turing complete language.
However, as mentioned earlier, the freedom it offers comes with significant risk in a
world in which code is law. Furthermore, the benefit of universal coverage offered by a
Turing complete language is more an illusion than a reality. As mentioned above, as
much as 80 per cent of all financial transactions can be represented by a mere half dozen
standardized smart contracts. Furthermore, the universe of virtually all financial
contracts extant in the market can be represented by less than three dozen smart
contracts. In the event that a rare or particularly exotic instrument is not covered by the
standard, nothing precludes the creation of a bespoke solution. However, for smart
contracts to be widely used, they must be completely trusted by the counter-parties, a
benefit not available for bespoke solutions.

Incorporating a smart contract standard, such as ACTUS, into the Block-Chain
offers benefits on several levels. It would enhance the efficiency and quality of financial
transactions, avoiding the pitfalls of the TPSs discussed above. In addition, it would
enable a new level of market transparency based on the smart contracts’ support for
financial analysis. Each participant in the financial system would not only know
precisely what was being transacted, but also how to analyze it. A smart contract is
able to generate the state-contingent cash flow needed for the full range of analysis:
risk, finance and regulation. Therefore, every interested party, whether a counter-party
(such as a bank or investor) or a regulator, would have the same access to this critical
input needed for financial analysis.

There are currently two approaches for using smart financial contracts with Block-
Chain: either “on-chain” or “off-chain”. On-chain approaches would record the actual smart
contracts on the Block-Chain. Off-chain approaches would have the smart contracts reside
alongside the Block-Chain, with only the payments generated by the smart contracts
recorded on the chain. In theory, both approaches can work. However, specialists currently
working on this still developing technology see the second approach as the preferred
solution for efficiency reasons. Which way this will ultimately be resolved is still an open
question.

Themost relevant of the CTs have been implemented and are available.

From digital
currencies to

digital finance

89

Notes

1. The research recognized with the Noble Memorial Prize centers on the importance of contracts to
the workings of an economy. It includes a wide range of issues that go to the ability of contracts
to contribute to the realization of desired outcomes, including incentives and performance;
agency; incomplete contracts; risk/return tradeoffs; implications for ownership structures;
obstacles to cooperation and how to overcome them; and others. This body of work does not
include the specifics of financial contracts discussed in this paper. For a summary of this body of
work, see “Scientific Background on the Sveriges Riksbank Prize in Economics Science in
Memory of Alfred Nobel 2016. OLIVER HART AND BENGT HOLMSTROM: Contract Theory”.
The Committee for the Prize in Economic Sciences in Memory of Alfred Nobel, October 10, 2016

2. The origin of the term “smart contract” goes back to the mid-1990s and is credited by multiple
sources to Nick Szabo, a computer scientist and cryptographer. He defines a smart contract as “A
computerized transaction protocol that executes the terms of a contract”.

3. For a complete discussion of this topic, see (Brammertz et al., 2009).

4. BCP 239, for example, demands consistent risk aggregation. We argue that consistent
aggregation demands a standard, as proposed here.

5. As a consequence of the 2008 financial crisis, the number of active cash-flow patterns in the
market has dropped significantly. Exotic options have practically disappeared.

6. www.ACTUSfrf.org

7. In 1864, William Sellers, an engineer, inventor and manufacturer proposed the adoption of a
standard for nuts and bolts, which ultimately became the “American Standard Threads”. See
(Sellers, 1864).

References
Brammertz, W., Akkizidis, I., Breymann, W., Entin, R. and Rustomann, M. (2009), Unified Financial

Analysis: TheMissing Links of Finance, JohnWiley & Sons.

Coppola, F. (2016), “A painful lesson for the ethereum community”, Forbes.com, 21 July 2016.
Sellers, W. (1864), “A system of screw threads and nuts”, Journal of the Franklin Institute, Vol. 47,

p. 344.

Corresponding author
Willi Brammertz can be contacted at: willi.brammertz@ariadne.swiss

JRF
19,1

90

http://www.ACTUSfrf.org
mailto:willi.brammertz@ariadne.swiss

Appendix From digital
currencies to

digital finance

91

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

JRF
19,1

92

	From digital currencies to digital finance: the case for a smart financial contract standard
	Uniqueness of financial contracts
	A closer look at the financial contract
	How financial institutions work in practice
	Transaction processing and financial contracts
	The analytic level: how it should be
	The analytic level: how it is in reality

	Solving the problem
	Cash flow generating standard
	ACTUS: the algorithmic contract types unified standard
	The system
	Discovery, not an invention

	Implementation of a system
	Technological challenge
	Adoption of a standard
	Disruption of the existing production line
	Cost of implementation

	References

