
Future Generation Computer Systems 100 (2019) 590–599

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Elastic and cost-effective data carrier architecture for smart contract in
blockchain
Xiaolong Liu a, Khan Muhammad b, Jaime Lloret c,∗, Yu-Wen Chen d, Shyan-Ming Yuan d,∗

a College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
b Department of Software, Sejong University, Seoul 143-747, Republic of Korea
c Integrated Management Coastal Research Institute, Universitat Politècnica de València, C/ Paranimf n◦ 1, Grao de
Gandía—Gandía, 46730 Valencia, Spain
d Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan

h i g h l i g h t s

• An elastic and cost-effective data carrier architecture for smart contracts is proposed.
• Three components are designed to monitor contract event without subscribing any filter at Ethereum node.
• The proposed system does not require a predefined standard on data format in blockchain-enabled IoT environment.
• The proposed system could efficiently decrease the deployment cost of every smart contract.

a r t i c l e i n f o

Article history:
Received 10 November 2018
Received in revised form 16 March 2019
Accepted 15 May 2019
Available online 24 May 2019

Keywords:
Blockchain
Blockchain-enabled IoT
Smart contract
Ethereum
Off-chain data
Data carrier

a b s t r a c t

Smart contract, which could help developer deploy decentralized and secure blockchain application,
is one of the most promising technologies for modern Internet of things (IoT) ecosystem today.
However, Ethereum smart contract lacks of ability to communicate with outside IoT environment.
To enable smart contracts to fetch off-chain data, this paper proposes a data carrier architecture
that is cost-effective and elastic for blockchain-enabled IoT environment. Three components, namely
Mission Manager, Task Publisher and Worker, are presented in the data carrier architecture to
interact with contract developer, smart contract, Ethereum node and off-chain data sources. Selective
solutions are also proposed for filtering smart contract event and decoding event log to fit different
requirements. The evaluation results and discussions show the proposed system will decrease about
20USD deployment cost in average for every smart contract, and it is more efficient and elastic
compared with Oraclize Oracle data carrier service.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the day-to-day workings of information-oriented society,
significant development of industrial systems has been witnessed
with the convergence from wireless networks, Internet of Things
(IoT) to blockchain [1,2]. IoT is a significant component of in-
dustrial systems, which has recently attracted the interest of
stakeholders [3,4]. Meanwhile, blockchain is termed as one of
the most promising technologies for IoT applications today, since
not being able to modify past transactions and absence of a
trusted intermediary make blockchain solution highly trustwor-
thy [5,6]. Several projects have examined the positive benefit

∗ Corresponding authors.
E-mail addresses: xlliu@fafu.edu.cn (X. Liu), khan.muhammad@ieee.org

(K. Muhammad), jlloret@dcom.upv.es (J. Lloret), w369gf523@gmail.com
(Y.-W. Chen), smyuan@cs.nctu.edu.tw (S.-M. Yuan).

of blockchain-enabled IoT applications, such as digital asset reg-
istries, peer-to-peer (P2P) energy trading, and long-tail person-
alized economic services [7,8]. The most representative applica-
tion of blockchain was Bitcoin proposed by Satoshi Nakamoto in
2008 [9], which is a peer-to-peer electronic cash system and a
distributed ledger. It eliminates the need for trusted third party
for e-commerce payment system. In 2013, blockchain developers
came up with the second-generation blockchain implementa-
tion, Ethereum [10], which contains more features than Bitcoin.
It provides not only a distributed ledger system but also the
implementation of smart contract [11].

Ethereum smart contract is the programmable application that
manages exchanges conducted online within Ethereum environ-
ment. Intelligence is built directly into the smart contract through
a protocol that automatically identifies, validates, confirms, and
routes transactions within the network. It allows proper, dis-
tributed, heavily automated workflows and brings more certainty
and reliability to industrial systems. Recently, a great diversity of

https://doi.org/10.1016/j.future.2019.05.042
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.05.042
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.05.042&domain=pdf
mailto:xlliu@fafu.edu.cn
mailto:khan.muhammad@ieee.org
mailto:jlloret@dcom.upv.es
mailto:w369gf523@gmail.com
mailto:smyuan@cs.nctu.edu.tw
https://doi.org/10.1016/j.future.2019.05.042

X. Liu, K. Muhammad, J. Lloret et al. / Future Generation Computer Systems 100 (2019) 590–599 591

smart contract based applications have been presented, including
applications for IoT, cloud computing, e-commerce and finan-
cial [12] Some researches utilize smart contracts to build access
control system to overcome security and privacy issues in IoT
environment [13,14]. In terms of cloud computing, the smart con-
tract applications could address the issues of resource manage-
ment of cloud datacenters, verifiability of outsourced computa-
tion, service level agreement monitoring, negotiation and agree-
ment establishment [15]. For e-commerce, Smart contract plays
important roles in the legal implications of exchanges conducted
on the blockchain [16].

Although Ethereum smart contract has now been serving an
important function in the automation of transactions and multi-
step processes, nowadays it lives like in a walled garden. Smart
contract cannot directly communicate with external environment
and fetch off-chain data, such as fed data for assets and en-
ergy trading applications in external IoT system. Because smart
contracts are executed within the Ethereum Virtual Machine,
whereas Ethereum Virtual Machine cannot communicate with
the external systems. Every transaction processed by different
Ethereum Virtual Machine spreading in same blockchain should
be the same result, while fetching off-chain data are not deter-
mined, neither generating random numbers. This feature highly
limits the developing of decentralized applications in Ethereum
environment [17]. Practically, smart contract developers must
setup an agent (i.e. data carrier) to get data off-chain, and call
the contract function to pass data back to the contract.

Oracle is one of the most general solutions for the limitation
mentioned above [18]. It is a new data carrier functionality that
provides the connectivity of smart contract to the outside world.
The idea is to fetch off-chain data that provided from more than
one data source, and then execute the data-dependent action if
the same answer is provided. Recently, several implementations
of Oracle have been developed. The main solution is to provide
an Oracle contract on the blockchain that serve off-chain data
requests by other smart contracts. However, this solution requires
a predefined standard on data format of smart contracts. Most
important, the problem of Oracle is that it increases deployment
costs for smart contract. While deploying smart contract with
Oracle as data carrier, original smart contract needs to inherit
extra smart contract, namely Oracle resolver, for interacting with
Oracle. The inherited contract increases the deployment costs,
because Ethereum charge fees when deploying smart contract is
according to how much space smart contract takes, namely, the
longer bytecode contract takes the higher fee Ethereum charges.
Thus, if developer want to develop a service which do not depend
on single contract, it takes different contract instance to service
different end-user. In addition, due to the adoption of a standard
interface of Oracle, the readability of smart contracts is reduced,
and Oracle is not compatible with smart contracts that do not
use Oracle at deployment. Therefore, this paper would propose a
cost-effective data carrier for Ethereum based smart contract to
solve the problems mentioned above.

The objective of this paper is to propose an elastic and cost-
effective data carrier architecture for Ethereum smart contracts
that minimize contract deployment costs, and monitor contract
event without subscribing any filter at Ethereum node. The pro-
posed architecture consists of three components: Mission Man-
ager, Task Publisher and Worker. It is responsible for the inter-
actions of contract developer register, monitor smart contract,
Ethereum node callback and fetch of external data source and
computation source. We also proposed selective solutions for fil-
tering smart contract event, and decoding event log to fit different
requirements. The comparison result with Oraclize Oracle service
in terms of deployment cost is also presented to show the superi-
ority of the proposed data carrier system. The main contributions
of our proposed data carrier system are the following:

• Reliable: the security model is maintained in this system,
users of decentralized blockchain-enabled IoT applications
do not have to trust a third party.

• Elastic: the proposed data carrier system does not require
a predefined standard on data format. It is not necessary
for data providers to modify their services to be compatible
with Ethereum protocols.

• Cost-effective: in this system, the original smart contract
does not need to inherit extra smart contract for inter-
acting with external IoT data source, which will efficiently
decrease the deployment cost of every smart contract that
need off-chain data carrier service.

The remainder of this paper is organized as follows. In Section 2,
we present the overview of blockchain and the analysis of related
Oracle works with its limitation. The design and implementation
of the proposed data carrier system is described in Section 3.
Section 4 evaluates and discusses the superiority of the proposed
system compared with Oraclize Oracle service. Finally, Section 5
draws conclusion and future work.

2. Related work

2.1. Blockchain

The blockchain was first stated in the digital cryptocurrency,
but its effect is being observed to be far wider than just the
alternative money. Originally block chain is distributed digital
transaction ledger, which is a type of database shared and syn-
chronized among distributed network. The most representative
application of blockchain was a peer-to-peer digital cash sys-
tem, Bitcoin, proposed by Satoshi Nakamoto. Its effect is being
witnessed to be far away than just alternative money. Nowa-
days, blockchain has been termed as one of the most promising
technologies for business and IoT applications today [19,20]. The
blocks in blockchain record transactions among participants in
peer-to-peer network, such as transaction of asset and energy
trading in IoT. The key idea behind blockchain is that every block
in the blockchain has a timestamp and unique cryptographic
signature. Every block refers to the signature of its previous
block in the chain. Therefore, all blocks can be traced, which
guarantees an auditable, immutable history of all transactions
in the blockchain [21]. Most importantly, there is no centralized
authority or third-party is involved in the blockchain. Participants
in the network conduct and agree by consensus on the updates
of blocks in chain. All the confirmed and validated transaction
blocks are linked and chained from the beginning of the chain
to the most current block.

Ethereum is a second-generation blockchain implementation,
which provides not only a distributed ledger system but also the
implementation of smart contract. The purpose of Ethereum is to
create an alternative protocol for building decentralized applica-
tions leverage on blockchain. The main difference between Bit-
coin and Ethereum is: For the first generation distributed ledger
likes Bitcoin, confirming an unconfirmed transaction only means
documenting the state of digital currency transfer between two
addresses; Whereas Ethereum extended the ability of transaction
by adding capability of computation to blockchain [22]. It regards
reaching consensus for state of program as reaching consensus
for transfer. The feature of Ethereum can deal with reaching
consensus for decentralized computations. To better understand
the work in this paper, the following basic and foundational
concepts of Ethereum should be clarified:

(1) Smart contract: Smart contract enabled by Ethereum
blockchain technology is a contract implemented, deployed
and executed within EVM. It is a set of commitments that

592 X. Liu, K. Muhammad, J. Lloret et al. / Future Generation Computer Systems 100 (2019) 590–599

are defined in digital form, including the agreement on how
contract participants shall fulfill these commitments. Smart
contract can be regard as programmable application which
consisting of functions that manage exchanges conducted
online. User can create an instance of the contract and
invoke functions to view and update contract data along
with execution of some logic.

(2) EVM: EVM is the virtual machine and runtime environment
for executing code written in Ethereum smart contracts. It
is the fundamental consensus mechanism for Ethereum. It
is sandboxed and completely isolated from the network,
file system or other processes of the host computer sys-
tem. EVM implementation is run on Ethereum node in the
network and executes the same instructions.

(3) Ether: Ether is the currency of Ethereum. Miners of
Ethereum who are successful in generating and creating
a block in the chain are rewarded by Ether. It is also the
medium used by Ethereum to pay transaction fees and
computing service fees. Ether can be traded on the foreign
exchange market easily by converting to dollars or other
traditional currencies through Crypto-exchanges.

(4) Gas: Gas is the internal currency of Ethereum that mea-
surement roughly equivalent to computational operation. It
determines the normal operation of the Ethereum network
ecosystem. Every operation in Ethereum has Gas expen-
diture, and the execution cost is predetermined in terms
of Gas units. Gas consists of two parts: Gas Limit and Gas
Price. Gas Limit is the maximum amount of Gas that the
user is willing to pay to perform an action or confirm a
transaction. Gas Price is the number of Gweis that users
are willing to spend on each Gas unit.

2.2. Oracle

Although integrating blockchain into the IoT is relatively re-
cent, several proposals have already been presented to improve
current IoT technology [23–25], where Ethereum is shown as
the most popular platform for IoT–blockchain applications. In
particular, smart contracts are presented to revolutionize many
industries by replacing the need for both traditional legal agree-
ments and centrally automated digital agreements [26]. Smart
contracts in blockchain-enable environment will inevitably re-
quire high-assurance versions of off-chain data, such as smart
contracts that require access to APIs reporting market prices, and
need data feeds about IoT data related to energy trading. Unfortu-
nately, Ethereum smart contracts cannot directly fetch off-chain
data with the outside world, since they are executed within EVM
with underlying consensus protocols. Therefore, smart contracts
that with functions of random numbers, decentralized exchanges,
and external information, required Oracle data carrier function-
ality to connect outside world [27]. Fig. 1 shows the conceptual
architecture of Oracle. The concept of it is to enable smart con-
tract to fetch off-chain data through Oracle external agent. The
main solution is to provide an Oracle contract on the blockchain,
which serves off-chain data requested by user smart contracts.
While deploying smart contract with Oracle, original user smart
contract needs to inherit extra smart contract, namely Oracle
resolver, with a predefined standard on data format. The Oracle
resolver is responsible for interacting with Oracle contract, which
is designed to present a simple API to a relying user contract
for its requests to external data source. As shown in Fig. 1,
Oracle contract accepts query datagram from Oracle resolver and
generates event log to external agent for fetching off-chain data.
At the end, external agent will launch a callback and return
corresponding data for user contract.

Fig. 1. The conceptual architecture of Oracle.

In reality, Oracle has various ways to implement. In 2014,
Ripple Labs [28] published a white paper of Smart Oracles and
implemented a system of smart oracles, called Codius [29], in
which rules can be written in any programming language. Codius
enables smart contracts to interact with any service that accepts
cryptographically signed commands. Later, Ellis et al. proposed a
decentralized Oracle network named ChainLink that provides for
contracts to gain external connectivity [30]. They presented both
a simple on-chain contract data aggregation system, and a more
efficient off-chain consensus mechanism. ChainLink can securely
push data to APIs and various legacy systems on behalf of a
smart contract. Recently, the leading Oracle service for smart con-
tracts and blockchain applications is Oraclize [18], which serves
thousands of requests every day on Ethereum platforms. Oraclize
provides part of the infrastructure needed to build smart and
useful decentralized applications, and its service guarantee the
correctness of data.

Generally, the first benefit of Oracle is that if users have
multiple contracts that need external data, traditionally, they
should program responder and launch one responder for each
smart contract. But if users take the architecture of Oracle, the
only event emitted by contract that needs off-chain data would be
Oracle contract, which makes Oracle become the agent of all con-
tracts that needs off-chain data. The second benefit is that Oracle
does not need to manage contract’s application binary interface.
In general, anyone wants to interact with specific contract, two
elements will be required, i.e. contract address and application
binary interface. However, Oracle users do not need to provide
any application binary interface for Oracle provider. Because the
Oracle data carrier system, such as Oraclize, contains a virtual
function used for callback, user needs to inherit standard callback
function to receive external data.

However, the feature that Oracle does not need application
binary interface is a double-edged sword. Its shortcoming is ev-
eryone can easily decode transaction event, even trigger the
callback function when contract programmer does not limit the
message sender of callback function. Appropriately, although the
purpose of application binary interface does not encrypt the
transaction, it still increases the risk of smart contract [31]. More-
over, the original smart contract needs to inherit extra smart
contract of Oracle for interacting with external data source. The
inherited contract increases the original smart contract content.
Since the more content contract takes the higher fee Ethereum
charges, the deployment costs will be increased while deploying
Ethereum smart contract with Oracle as data carrier. To solve
the problems mentioned above, in this paper, we will propose
an elastic and cost-effective data carrier for smart contract to
interact with the outside data source.

X. Liu, K. Muhammad, J. Lloret et al. / Future Generation Computer Systems 100 (2019) 590–599 593

Fig. 2. The interactions of the proposed data carrier.

Fig. 3. The architecture of the proposed data carrier.

3. System design and implementation

This section will introduce the propose data carrier architec-
ture for smart contract in blockchain-enabled IoT environment
to interact with the outside data sources. The overview of the
proposed architecture and details of each component will be
illustrated accordingly.

Fig. 2 shows the interactions of the proposed data carrier
system. At the very beginning, it is responsible for the register of
original smart contract developer, including constructing mission
and registering mission. After that, the data carrier system would
monitor the corresponding Ethereum smart contract that needs
external off-chain data. Once being activated by any transac-
tion, the managed smart contract will fetch off-chain data from
external environment and callback the fetched results to smart
contract through Ethereum node. Generally, there are two kinds
of off-chain data that need to be handled in the data carrier
service for smart contract. The first one is the general data that
provided by external data source, and the other one is the results
that computed in computation source.

Fig. 3 shows the conceptual architecture of the proposed data
carrier system. Basically, it contains three components: Mission
Manager, Task Publisher and Worker. Mission Manager is used
to receive mission registered by system user. A mission contains

Fig. 4. The architecture of Task Publisher.

event hash, contract address, ways to respond event, and the
queue topic response for event. Task Publisher will perform four
phases action for each block pended, including, collect trans-
actions on new block, filter out unconcerned transaction, fetch
argument in event, and send generated task to specific Worker.
Worker will retrieve data according to the task, encode data with
application binary interface, and make function call transaction
as event’s callback. While using the proposed system, users need
to do only two things. The first thing is to register in the system,
which is part of the Mission Manager. The second thing is to build
Worker themselves if they are not using the features provided
by the system maintainer, and connected this Worker to Task
Publisher.

3.1. Mission manager

Mission Manager consists of front-end and back-end. The
front-end is mainly responsible for constructing mission and
registering mission to back-end. The data source information
collected by frontend of Mission Manager is mission requisition
template (MRT), which is described in Table 1. Front-end will
transform MRT into mission and send it to back-end via http post
to register mission.

To build service back-end, the Express web framework [32] is
used. It is designed for building web applications and APIs, and
hosted within the node.js runtime environment. We use Express
to set up a RESTful API for users to register mission, and store
it in MongoDB. The standard format of mission that is sent from
front-end is described in Table 2. The stored mission provides the
necessary information for monitoring Ethereum blockchain, how
to send external data back to the smart contract, and how does
worker retrieve the external data.

3.2. Task publisher

Task Publisher will perform four phases action for each block
pended, including collect transactions on Ethereum node, filter
out unconcerned transaction, fetch argument in event, and send
generated task to specific Worker. Fig. 4 shows the general archi-
tecture of task publisher, which is mainly consist of filter module,
decoding module and publishing module. The transaction infor-
mation is retrieved from Ethereum node, which can be practically
parsed from public Ethereum block explorer website directly, or
retrieve data via website provided APIs. The Task Publisher is
implement by Node.js with the characteristic of event-driven and
non-blocking I/O model. The following subsections will illustrate
each module of Task Publisher in details.

594 X. Liu, K. Muhammad, J. Lloret et al. / Future Generation Computer Systems 100 (2019) 590–599

Table 1
The standard format of mission requisition template (MRT).
Key Format Description

contractAddress String The contract address which is monitored
eventName String Target event’s name
contract_interface JSON Array Contract application binary interface
command String Command template, executing command after filling in parameter part.
callbackFunctionName String Name of function which is used to receive external data or computation result.
messageQueueChannel String Used to identify worker connection port.

Table 2
The standard format of mission.
Key Format Description

contractAddress String The contract address which is monitored
eventHash String Hash of the event name and parameter type.
eventInterface JSON Array A part of contract application binary interface, used to decode event.
command String Command template, executing command after filling in parameter part.
callbackInterface JSON Array A part of contract application binary interface, used to encode transaction data.
messageQueueChannel String Used to identify worker connection port.

3.2.1. Filter module
Filter module is triggered when every new block header comes

in to find out whether managed Ethereum smart contract is
activated by any address. In order to know when can we check
new block on Ethereum blockchain, it subscribes Ethereum node
with web3 package. Block header information retrieved from
Ethereum node can be used as timer to check for changes on
the blockchain. After retrieving block header, we could know
the number of newest block pended to blockchain. After that
we could get the detailed block information by web3 method
‘‘web3.eth.getBlock’’. The block information contains transaction
hash, which is the hash of the signed transaction object. It is
unique for each transaction, and by which Ethereum user can
trace their transaction. With this transaction hash, the ‘‘target
address’’ of the transaction will be retrieved from Ethereum node.
The target address is the address of the transaction receiver, if the
transaction is used for trigger smart contract function, the target
address will be the smart contract address.

After that, we can already know which smart contract in
Ethereum is triggered, and could know whether the smart con-
tract hosted by our system has been triggered or not by checking
Key ‘‘contractAddress’’ in the mission database. Since each trans-
action can trigger multiple events in smart contract, we can
further use the key ‘‘eventHash’’ store in mission database to filter
out the event we are responsible for.

3.2.2. Decoding module
The goal of decoding module is to decode the arguments in the

filtered event from filter module, and generate task for Worker.
Since we do not qualify the user’s event record arguments se-
quence and type, we need the event interface to perform decode
event. Fig. 5 shows the workflow of task generating. At the very
beginning decoding module will obtains the filtered event from
filter module and the mission from the database. In mission,
we can additionally know the message queue channel that is
responsible for the event. The key ‘‘eventInterface’’ of mission,
which is part of contract application binary interface, will be
used to decode the event’s log arguments. After that, the decoded
content will replace the ‘‘command’’ of mission into an actual
comment of task.

Fig. 6 shows an example of how decoding module replace
command template. In this example user supposes to generate
random numbers range from 10 to 100 for the smart contract.
As shown in Fig. 6, the command contains a python command
template with variables ‘‘$lowerBound’’ and ‘‘$upperBound’’. The
decoded log contains the log arguments decoded by the decoding
module, where the values of lowerBound is 10 and upperBound

Fig. 5. The workflow of Task Generating.

Fig. 6. An example of command replacement.

is 100. During command replacement, log arguments 10 and
100 will be used to replace the variables ‘‘$lowerBound’’ and
‘‘$upperBound’’ in the python command template, respectively.
Therefore, after replacing the variables in command by log argu-
ments, decoding module will get the actual command, which will
be ‘‘command: python random.py 10 100’’ in this example. The fi-
nal task will be generated by combining the ‘‘replaced command’’
with ‘‘contractAddress’’ and ‘‘callback_interface’’ of mission.

3.2.3. Publishing module
After replacing command and generating task, we should push

the task to the message queue according to ‘‘messageQueueChan-
nel’’ of mission in the database. In practice, rabbitMQ [33] is
used to implement through the Rabbit.js package, which pro-
vides a simple, socket-oriented API for messaging in Node.JS. The
message queue mode we use is PUSH/WORKER mode. WORKER
socket will receive a share of the messages, and require calling
of acknowledgment function to acknowledge that each message
has been processed. Any messages left unacknowledged when
the socket closes, or crashes, will be requeued and delivered
to another connected socket. A WORKER socket is read-only,
and has the additional method which acknowledges the oldest
unacknowledged message, and must be called once only for each
message.

X. Liu, K. Muhammad, J. Lloret et al. / Future Generation Computer Systems 100 (2019) 590–599 595

Fig. 7. The architecture of Worker.

Since there may be an error task at the worker side, it requires
to ensure that each task will be processed correctly. Worker
cannot immediately acknowledge the queue after obtaining the
data. If the worker obtains the task that cannot be processed, it
will be corrupted before worker informs the system that the task
cannot be executed. In addition, on both publisher and worker
side, we set option ‘‘persistent’’ in RabbitMQ to be true. The
option ‘‘persistent’’ could govern the lifetime of messages, and
setting it to be true means RabbitMQ will keep messages over
restarts by writing them to disk. This is an option for all sockets,
and crucially, sockets connected to the same address must agree
on persistence. The ‘‘persistent’’ feature ensures that even if the
system crashes, tasks that have not yet been executed by the
Worker will not be lost.

3.3. Worker

Worker is responsible for retrieving data according to the task
sent by Task Publisher, encoding data with application binary
interface, and making function call transaction as event’s callback.
Fig. 7 shows the general architecture of Worker, which consists of
execution module, transaction module, fetching agent that could
fetch external data, and computing agent that provide external
computation.

The Execution module would execute receiving ‘‘command’’
from task in message queue to obtain data. It uses the child_
process package of Node.js to generate an external execution
program. This program can be fetching agent or computing agent,
the working scenarios are shown in Fig. 8. The execution can
be processed as external computation or simply fetch data from
external data source, which makes Worker highly flexible. After
execution, both working scenarios require to output the param-
eters of smart contract to standard output as a JSON array. The
worker will obtain this output for the transaction module as
callback parameter.

The transaction module is responsible for passing the results
generated by the execution module back to the smart contract
via function calls. The functions responsible for receiving external
data are data callback functions. To interact with smart contract
in Ethereum node, we only need to manage the parameters to
be transmitted and use the callback function interface to encode
transaction. Therefore, with help of the proposed data carrier
system, external data and computation source can be efficiently
fetched for smart contract to interact with the outside world.

4. Evaluation results and discussions

4.1. Evaluation results

The comparison results of the proposed data carrier system
with Oraclize Oracle service are presented in this section. The

Table 3
Deployment Costs of KrakenPriceTicker and Oracle contracts.
Optimization KrakenPriceTicker (Gas) Oracle (Gas) Total (Gas)

No 433,800 2,563,800 2,997,600
Yes 393,000 1,719,200 2,112,200

main difference between the data carrier architecture proposed in
this paper and the Oracle system is the deployment costs of smart
contracts. Fig. 9 shows the default deployment scenario of the
proposed system. While deploying smart contract with the pro-
posed data carrier system, the contract developers only require
to compose their original smart contract and assign correspond-
ing mission. The proposed system will automatically response
transaction events, and no extra smart contract deployment is
required. On the contrary, while deploying smart contract with
Oracle as data carrier, original smart contract needs to inherit ex-
tra smart contract for interacting with Oracle. The inherited con-
tract increases the deployment costs, because Ethereum charge
fees when deploying smart contract is depended on how much
space smart contract takes, namely, the longer bytecode contract
takes the higher fee Ethereum charges.

The evaluation is presented to demonstrate that the proposed
system can accurately decrease deployment costs of smart con-
tracts compared with Oracle. The example smart contract used
in the evaluation is KrakenPriceTicker.sol [34], which is a smart
contract that fetch Bitcoin price at Kraken digital asset trading
platform. To KrakenPriceTicker smart contract to fetch external
data in Oracle service, user should deploy the Oracle contract at
the same time.

Table 3 shows the deployment costs of krakenPriceTicker and
Oracle contracts, where optimization refers to whether the smart
contract functions are optimized by the smart contract devel-
oper or not. The deployment of original krakenPriceTicker smart
contract costs 433,800Gas before optimization and 393,000Gas
after optimization. On the other hand, Oracle contract costs about
2,563,800Gas before optimization, and the deployment cost is
1,719,200Gas even if the optimization is conducted. It indicates
that the deployment of krakenPriceTicker smart contract in Ora-
cle would cost about 2,112,200Gas after optimization. As shown
in Table 3, the deployment cost of Oracle contract may even be
several times higher than the original krakenPriceTicker smart
contract. This is because Oracle provides a lot of additional func-
tions that are redundant for users, which results in a very large
storage consume and deployment cost during deploying smart
contract in Oracle. Table 4 shows the Ethereum fee schedule
during deployment. According to Table 4, we can find that the
main cost of smart contract deployment is charge for placing
code in smart contract creation and carried data size in trans-
action. Therefore, the more data carried by smart contract and
transaction, the higher the fee Ethereum charged.

In this evaluation, we intent to calculate how much cost can be
saved by our data carrier system compared with Oracle for every
smart contract. Basically, the difference between our data carrier
system and Oracle is that additional Oracle contract should be
inherited and deployed in Oracle environment. Therefore, at lease
1,719,200Gas can be saved in our data carrier system according to
Table 3. The equation for calculating the actual cost of deploying
a smart contract list is defined as follows:

Deployment Cost = Gas Used∗Gas Price∗Ether Price, (1)

where Gas Used is the total Gas used to deploy the smart contract,
which is decided after compiling the smart contract (more specif-
ically, it was decided during the deployment). When deploying
smart contracts, the cost mainly comes from the size of the
original data, the space occupied by the smart contract after

596 X. Liu, K. Muhammad, J. Lloret et al. / Future Generation Computer Systems 100 (2019) 590–599

Fig. 8. The working scenarios of Worker.

Fig. 9. Default deployment scenario of the proposed data carrier system.

deployment, and the constructor operating costs. Gas price refers
to the amount of Ether users are willing to pay for every unit
of Gas, and is usually measured in ‘‘Gwei’’, which equals to 10−9

Ether. Ether price is the actual exchange rate of Ether to dollar in
real world.

To evaluate the actual deployment cost, we list the actual price
of Ethereum Gas and Ether from February to May 2018 [35,36],
which are shown in Figs. 10 and 11, respectively. After calcula-
tion, the results in Table 5 show that the average Gas and Ether
Prices are 17.15973Gwei and 668.7079USD, respectively. Since
Oracle contract takes about 1,719,200Gas as shown in Table 3,
the actual cost of deploying Oracle contract is 1,719,200Gas *
17.15973Gwei* 668.7079USD≈ 19.72USD. It indicates that 20USD
deployment cost can be saved for averagely by our data carrier
system compared with Oracle.

4.2. Discussions

The evaluation results have demonstrated that the proposed
system can accurately decrease deployment costs of smart con-
tracts compared with Oracle. The other problem in Oracle is it
requires a predefined standard on data format. It is not compat-
ible with the smart contracts that do not use Oracle standard
during deployment. In Decoding module of Task Publisher in the
proposed architecture, event interface is used to decode the event
logs. Although we can use the standard interface of Oracle, the
system would not be compatible with smart contracts that did

Table 5
Average gas and ether prices from February to May 2018.
Average gas price Average ether price

17.15973 Gwei 668.7079 USD

not have automatic callbacks, since Oracle standard interface is
pre-specified. In addition, malicious attackers can easily decode
the event in Oracle standard interface, even trigger the callback
function when contract programmer does not limit the message
sender of callback function. Although the purpose of application
binary interface does not encrypt the transaction, it still increases
the risk of smart contract. Moreover, if the standard interface of
Oracle is used, this interface may be compatible with different
types of data. Therefore, the readability of smart contracts will
reduce, which will also cause users writing null data in the event
log and incur additional costs inevitably.

On the other hand, in data carrier service for smart contract,
if the external data is off-chain data the data source consen-
sus problem will arise. Although both the proposed system and
Oracle service can guarantee that the source of the data is orig-
inal source of the request and the calculated results have not
been tampered, the use of data source cannot guarantee the
correctness itself. If the smart contract is a type of contract like
insurance, the information imported from the off-chain should be
based on mutual agreement from different data resource parties.
Generally, to solve data source consensus issue in Oracle service,
the traditional way is that both parties should upload data and
manage it by smart contract, and the other way is to verify
it by decentralized computation solution, such as TrueBit [37].
However, in the proposed data carrier architecture, the off-chain
data resource consensus problem can be solved more efficiently
by using different Workers instead of managing mutual data
in smart contract. The frameworks of double source consensus
solutions in the proposed architecture are shown in Fig. 12, the
Workers could be simply assigned by single Task Publisher or
assigned by different Task Publishers, respectively.

In terms of security, Oracle provides authenticity proofs for
smart contract developer, but they are optional functions in Ora-
cle, which means the use of authenticity proofs in Oracle requires
the payment of an extra fee. The cost depends from the data
source type used and by the authenticity proof requested. In

Table 4
Ethereum fee schedule during smart contract deployment.
Name Value (Gas) Description

Code deposit 32000 Paid for a CREATE operation
Create 200 Paid per byte for a CREATE operation to place code into state
Transaction 21000 Paid for every transaction.
Txdatazero 4 Paid for every zero byte of data or code for a transaction.
Txdatanonzero 68 Paid for every non-zero byte of data or code for a transaction.

X. Liu, K. Muhammad, J. Lloret et al. / Future Generation Computer Systems 100 (2019) 590–599 597

Fig. 10. Gas Price (2018.2–2018.5)

Fig. 11. Ether price (2018.2–2018.5)

Fig. 12. The frameworks of double source consensus solutions.

addition, not all proofs are compatible with all data source types.
Therefore, smart contract developer not only needs to cover the
gas consumption of inheriting the basic data fetching functions
in Oracle, but also needs to pay extra fees if authentication
proofs are required. Compared with Oracle, the most significant
contribution of the proposed system is it can help smart contract
developers reduce their gas consumption during smart contract
deployment. However, since the proposed system is deployed in
off-chain environment, some users may doubt the transaction
security in our system. Since the system components are designed
elastic, there are different deployment scenarios of the proposed
data carrier system. For users who require more trustworthy
data fetching service, we provide a more trustworthy deployment
scenario, as shown in Fig. 13. In this scenario, Worker component
is suggested to deployed on user-side and maintained by them-
selves. Because Worker component contains transaction module
which is the key module for passing fetched results to the smart
contract. The data carrier system will be more trustworthy if
users deploy Worker in their local sides.

Fig. 13. More trustworthy deployment scenario of the proposed data carrier
system.

598 X. Liu, K. Muhammad, J. Lloret et al. / Future Generation Computer Systems 100 (2019) 590–599

In addition to deploying Worker in user-side, an alternative for
enhancing security of proposed system is adopting trusted hard-
ware, such as Intel‘s Software Guard Extensions (SGX). SGX is a
set of new instructions that confer hardware protections on user-
level code, which has been used in Town Crier (TC) [38] for scrap-
ing HTTPS-enabled websites and serving source-authenticated
data to relying smart contracts. In the future, we will try to
incorporate Town Crier’s design, such as integrating Worker com-
ponent with Intel SGX instruction set, to present a more cost-
effective and trustworthy data carrier system in server-side, trust-
worthy data feeds.

5. Conclusions

This work proposes an elastic and cost-effective data carrier
architecture for smart contracts in blockchain-enabled IoT en-
vironment that requires communication with external off-chain
data. The proposed architecture consists of three components:
Mission Manager, Task Publisher and Worker. Selective solutions
for filtering smart contract event and decoding event log to fit
different requirements are presented. The proposed system is
designed to minimize contract deployment costs and monitor
contract event without subscribing any filter at Ethereum node.
In the evaluation, we show that it will save about 20USD deploy-
ment cost for average by our data carrier system compared with
Oracle service. We also discuss the deployments of solving data
resource consensus problem caused by fetching off-chain data,
and trustworthy scenario for users who require more secure data
fetching service. Compared with Oracle, the proposed data carrier
system is demonstrated more efficient, elastic and cost-effective.
In the future, to make a great deal of improvement in security,
we will try to combine the proposed components with Intel SGX
instruction set and decentralized technologies, such as Raiden
Network [39], to present a more cost-effective and secure data
carrier system.

Acknowledgments

This work was supported by the fund of National Natural Sci-
ence Foundation of China (Grants No. 61702102), Natural Science
Foundation of Fujian Province, China (Grant No. 2018J05100),
Foundation for Distinguished Young Scholars of Fujian Agriculture
and Forestry University (Grant No. xjq201809), and in part by the
MOST of Taiwan (Grant No. 107-2623-E-009-006-D).

Conflict of interest statement

None.

Declaration of confliction interests

The authors declare that they had no conflicts of interest with
respect to their authorship or the publication of this article.

References

[1] R. Li, T. Song, B. Mei, H. Li, X. Cheng, L. Sun, Blockchain for large-scale
internet of things data storage and protection, IEEE Trans. Serv. Comput.
(2018) http://dx.doi.org/10.1109/TSC.2018.2853167.

[2] D. Liu, Y. Xu, X. Huang, Identification of location spoofing in wireless sensor
networks in non-line-of-sight conditions, IEEE Trans. Ind. Inf. 14 (6) (2018)
2375–2384.

[3] Z. Yan, J. Liu, A.V. Vasilakos, L.T. Yang, Trustworthy data fusion and mining
in internet of things, Future Gener. Comput. Syst. 49 (C) (2015) 45–46.

[4] K. Muhammad, R. Hamza, J. Ahmad, J. Lloret, H.H.G. Wang, S.W. Baik,
Secure surveillance framework for iot systems using probabilistic image
encryption, IEEE Trans. Ind. Inf. 14 (8) (2018) 3679–3689.

[5] A. Reyna, C. Martín, J. Chen, E. Soler, M. Díaz, On blockchain and its
integration with iot. challenges and opportunities, Future Gener. Comput.
Syst. 88 (2018) 173–190.

[6] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, E. Hossain, Enabling
localized peer-to-peer electricity trading among plug-in hybrid electric
vehicles using consortium blockchains, IEEE Trans. Ind. Inf. 13 (6) (2017)
3154–3164.

[7] M.A. Khan, K. Salah, Iot security: review, blockchain solutions, and open
challenges, Future Gener. Comput. Syst. 82 (2018) 395–411.

[8] Y. Zhang, J. Wen, The iot electric business model: using blockchain
technology for the internet of things, Peer-to-Peer Netw. Appl. 10 (4)
(2017) 983–994.

[9] S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system, 2008,
Consulted, Available https://bitcoin.org/bitcoin.pdf.

[10] V. Buterin, A next-generation smart contract and decentralized application
platform, Etherum (2014) 1–36, http://dx.doi.org/10.5663/aps.v1i1.10138.

[11] D. Magazzeni, P. Mcburney, W. Nash, Validation and verification of smart
contracts: a research agenda, Computer 50 (9) (2017) 50–57.

[12] M. Alharby, A. Aldweesh, A.V. Moorsel, Blockchain-based smart contracts:
a systematic mapping study of academic research, in: ICCBB 2018: Inter-
national Conference on Cloud Computing, Big Data and Blockchain, pp.
1–6.

[13] M.Y. Afanasev, Y.V. Fedosov, A.A. Krylova, S.A. Shorokhov, An application of
blockchain and smart contracts for machine-to-machine communications
in cyber-physical production systems, IEEE Ind. Cyber-Phys. Syst. (2018)
http://dx.doi.org/10.1109/ICPHYS.2018.8387630.

[14] A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts, IEEE
Security Privacy (2016) 839–858.

[15] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, A. van Moorsel, Betrayal,
distrust, and rationality: smart counter-collusion contracts for verifiable
cloud computing, in: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, ACM, 2017, pp. 211–227.

[16] P. Ryan, Smart contract relations in e-commerce: legal implications of
exchanges conducted on the blockchain, Technol. Innovat. Manag. Rev. 7
(10) (2017) 14–21.

[17] K. Christidis, M. Devetsikiotis, Blockchains and smart contracts for the
internet of things, IEEE Access 4 (2016) 2292–2303.

[18] Oraclize, API documentation. Available online: http://docs.oraclize.it/ (22
August 2018).

[19] C. Prybila, S. Schulte, C. Hochreiner, I. Weber, Runtime verification for
business processes utilizing the bitcoin blockchain, Future Gener. Comput.
Syst. (2018) http://dx.doi.org/10.1016/j.future.2017.08.024.

[20] T.T.A. Dinh, R. Liu, M. Zhang, G. Chen, B.C. Ooi, J. Wang, Untangling
blockchain: a data processing view of blockchain systems, IEEE Trans.
Knowl. Data Eng. 30 (7) (2018) 1366–1385.

[21] M. Swan, Anticipating the economic benefits of blockchain, Technol.
Innovat. Manag. Rev. 7 (10) (2017) 6–13.

[22] Y. Yuan, F.Y. Wang, Blockchain and cryptocurrencies: model, techniques,
and applications, IEEE Trans. Syst. Man Cybern. Syst. 48 (9) (2018)
1421–1428.

[23] P. Veena, S. Panikkar, S. Nair, P. Brody, Empowering the Edge-practical
Insights on a Decentralized Internet of Things, 17, IBM Institute for
Business Value, 2015.

[24] G. Prisco, Slock it to introduce smart locks linked to smart ethereum
contracts, decentralize the sharing economy, Available online:
https://bitcoinmagazine.com/articles/slock-it-to-introduce-smart-locks-
linked-to-smart-ethereum-contracts-decentralize-the-sharing-economy-
1446746719/. (22 August 2018).

[25] Chain of things, Available online: https://www.chainofthings.com/. (22
August 2018).

[26] J. Liu, W. Li, G.O. Karame, N. Asokan, Toward fairness of cryptocurrency
payments, IEEE Security Privacy 16 (3) (2018) 81–89.

[27] Understanding-oracles, Available online: https://blog.oraclize.it/
understanding-oracles-99055c9c9f7b. (22 August 2018).

[28] Ripple Labs, Available online: https://ripple.com. (22 August 2018).
[29] Codius, Available online: https://github.com/codius/codius-wiki/wiki/

White-Paper. (22 August 2018).
[30] S. Ellis, A. Juels, S. Nazarov, Chain link a decentralized oracle network,

Chainlink (2017) 1–38.
[31] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum smart

contracts (sok), in: International Conference on Principles of Security and
Trust, Springer, Berlin, Heidelberg, 2017, pp. 164–186.

[32] Express, Available online: http://expressjs.com. (22 August 2018).
[33] Rabbitmq, Available online: www.rabbitmq.com (22 August 2018).
[34] KrakenPriceTicker, Available online: https://dapps.oraclize.it/browser-

solidity/#version=soljson-v0.4.19+commit.c4cbbb05.js&optimize=false&
gist=ad3d1f6007942b727f5909b55e6445d2. (22 August 2018).

[35] Ether Historical Prices, Available online: https://etherscan.io/chart/
etherprice. (22 August 2018).

http://dx.doi.org/10.1109/TSC.2018.2853167
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb2
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb2
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb2
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb2
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb2
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb3
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb3
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb3
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb4
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb4
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb4
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb4
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb4
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb5
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb5
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb5
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb5
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb5
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb6
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb6
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb6
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb6
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb6
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb6
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb6
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb7
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb7
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb7
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb8
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb8
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb8
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb8
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb8
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.5663/aps.v1i1.10138
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb11
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb11
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb11
http://dx.doi.org/10.1109/ICPHYS.2018.8387630
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb14
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb14
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb14
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb14
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb14
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb15
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb15
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb15
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb15
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb15
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb15
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb15
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb16
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb16
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb16
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb16
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb16
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb17
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb17
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb17
http://docs.oraclize.it/
http://dx.doi.org/10.1016/j.future.2017.08.024
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb20
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb20
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb20
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb20
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb20
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb21
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb21
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb21
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb22
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb22
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb22
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb22
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb22
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb23
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb23
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb23
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb23
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb23
https://bitcoinmagazine.com/articles/slock-it-to-introduce-smart-locks-linked-to-smart-ethereum-contracts-decentralize-the-sharing-economy-1446746719/
https://bitcoinmagazine.com/articles/slock-it-to-introduce-smart-locks-linked-to-smart-ethereum-contracts-decentralize-the-sharing-economy-1446746719/
https://bitcoinmagazine.com/articles/slock-it-to-introduce-smart-locks-linked-to-smart-ethereum-contracts-decentralize-the-sharing-economy-1446746719/
https://bitcoinmagazine.com/articles/slock-it-to-introduce-smart-locks-linked-to-smart-ethereum-contracts-decentralize-the-sharing-economy-1446746719/
https://bitcoinmagazine.com/articles/slock-it-to-introduce-smart-locks-linked-to-smart-ethereum-contracts-decentralize-the-sharing-economy-1446746719/
https://www.chainofthings.com/
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb26
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb26
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb26
https://blog.oraclize.it/understanding-oracles-99055c9c9f7b
https://blog.oraclize.it/understanding-oracles-99055c9c9f7b
https://blog.oraclize.it/understanding-oracles-99055c9c9f7b
https://ripple.com
https://github.com/codius/codius-wiki/wiki/White-Paper
https://github.com/codius/codius-wiki/wiki/White-Paper
https://github.com/codius/codius-wiki/wiki/White-Paper
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb30
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb30
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb30
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb31
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb31
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb31
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb31
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb31
http://expressjs.com
http://www.rabbitmq.com
https://dapps.oraclize.it/browser-solidity/#version=soljson-v0.4.19+commit.c4cbbb05.js&optimize=false&gist=ad3d1f6007942b727f5909b55e6445d2
https://dapps.oraclize.it/browser-solidity/#version=soljson-v0.4.19+commit.c4cbbb05.js&optimize=false&gist=ad3d1f6007942b727f5909b55e6445d2
https://dapps.oraclize.it/browser-solidity/#version=soljson-v0.4.19+commit.c4cbbb05.js&optimize=false&gist=ad3d1f6007942b727f5909b55e6445d2
https://dapps.oraclize.it/browser-solidity/#version=soljson-v0.4.19+commit.c4cbbb05.js&optimize=false&gist=ad3d1f6007942b727f5909b55e6445d2
https://dapps.oraclize.it/browser-solidity/#version=soljson-v0.4.19+commit.c4cbbb05.js&optimize=false&gist=ad3d1f6007942b727f5909b55e6445d2
https://etherscan.io/chart/etherprice
https://etherscan.io/chart/etherprice
https://etherscan.io/chart/etherprice

X. Liu, K. Muhammad, J. Lloret et al. / Future Generation Computer Systems 100 (2019) 590–599 599

[36] Transaction Fees, Available online: https://etherscan.io/chart/
transactionfee. (22 August 2018).

[37] T. Jason, R. Christian, A scalable verification solution for blockchains,
Ethereum (2017) 1–50.

[38] F. Zhang, E. Cecchetti, K. Croman, Town crier: an authenticated data feed
for smart contracts, in: Acm Conference on Computer & Communications
Security, 2016, pp. 1–20.

[39] R. Joseph, D. Thaddeus, The bitcoin lightning network: Scalable
off-chain instant payments, 2016, https://lightning.network/lightning-
network-paper.pdf.

Xiaolong Liu received his B.S. degree from Xiamen
University, China in 2011, his M.S. degree in Computer
Science and Information Management from Providence
University, Taiwan in 2013, his Ph.D. degree in Institute
of Computer Science and Engineering, National Chiao
Tung University, Taiwan in 2016. Since 2016, he has
been an Assistant Professor with the College of Com-
puter and Information Sciences, Fujian Agriculture and
Forestry University. He is the author of more than 30
peer-reviewed international journal and conference pa-
pers. Dr. Liu was a recipient of the Taiwan Association

for Web Intelligence Consortium Best Dissertation Award in 2016. His research
interests include internet technologies, distributed computing and multimedia
security.

Khan Muhammad received the Ph.D. degree in Digital
Contents from Sejong University, South Korea. He is
currently working as an Assistant Professor at Depart-
ment of Software and lead researcher of Intelligent Me-
dia Laboratory, Sejong University, Seoul. His research
interests include medical image analysis (brain MRI, di-
agnostic hysteroscopy and wireless capsule endoscopy),
information security (steganography, encryption, wa-
termarking and image hashing), video summarization,
computer vision, fire/smoke scene analysis, and video
surveillance. He has published over 60 papers in peer-

reviewed international journals and conferences in these research areas with
target venues as IEEE COMMAG, TII, TIE, TSMC-Systems, IoTJ, Access, TSC, Else-
vier INS, Neurocomputing, PRL, FGCS, ASOC, IJIM, SWEVO, COMCOM, COMIND,
JPDC, PMC, BSPC, CAEE, Springer NCAA, MTAP, JOMS, and RTIP, etc. He is
also serving as a professional reviewer for over 40 well-reputed journals and
conferences.

Prof. Jaime Lloret (jlloret@dcom.upv.es) received his
B.Sc. + M.Sc. in Physics in 1997, his B.Sc. + M.Sc.
in electronic Engineering in 2003 and his Ph.D. in
telecommunication engineering (Dr. Ing.) in 2006. He
is a Cisco Certified Network Professional Instructor. He
worked as a network designer and administrator in
several enterprises. He is currently Associate Professor
in the Polytechnic University of Valencia. He is the
Chair of the Integrated Management Coastal Research
Institute (IGIC) and he is the head of the ‘‘Active
and collaborative techniques and use of technologic

resources in the education (EITACURTE)’’ Innovation Group. He is the director
of the University Diploma ‘‘Redes y Comunicaciones de Ordenadores’’ and
he has been the director of the University Master ‘‘Digital Post Production’’

for the term 2012–2016. He was Vice-chair for the Europe/Africa Region of
Cognitive Networks Technical Committee (IEEE Communications Society) for
the term 2010–2012 and Vice-chair of the Internet Technical Committee (IEEE
Communications Society and Internet society) for the term 2011–2013. He has
been Internet Technical Committee chair (IEEE Communications Society and
Internet society) for the term 2013–2015. He has authored 22 book chapters
and has more than 450 research papers published in national and international
conferences, international journals (more than 200 with ISI Thomson JCR). He
has been the co-editor of 40 conference proceedings and guest editor of several
international books and journals. He is editor-in-chief of the ‘‘Ad Hoc and
Sensor Wireless Networks’’ (with ISI Thomson Impact Factor), the international
journal ‘‘Networks Protocols and Algorithms’’, and the International Journal
of Multimedia Communications. Moreover, he is Associate Editor-in-Chief of
‘‘Sensors’’ in the Section sensor Networks, he is advisory board member of the
‘‘International Journal of Distributed Sensor Networks’’ (both with ISI Thomson
Impact factor), and he is IARIA Journals Board Chair (8 Journals). Furthermore,
he is (or has been) associate editor of 46 international journals (16 of them with
ISI Thomson Impact Factor). He has been involved in more than 450 Program
committees of international conferences, and more than 150 organization and
steering committees. He has led many local, regional, national and European
projects. He is currently the chair of the Working Group of the Standard IEEE
1907.1. Since 2016 he is the Spanish researcher with highest h-index in the
TELECOMMUNICATIONS journal list according to Clarivate Analytics Ranking.
He has been general chair (or co-chair) of 45 International workshops and
conferences (chairman of SENSORCOMM 2007, UBICOMM 2008, ICNS 2009,
ICWMC 2010, eKNOW 2012, SERVICE COMPUTATION 2013, COGNITIVE 2013,
ADAPTIVE 2013, 12th AICT 2016, 11th ICIMP 2016, 3rd GREENETS 2016, 13th
IWCMC 2017, 10th WMNC 2017, 18th ICN 2019, 14th ICDT 2019, 12th CTRQ
2019, and GC-ElecEng 2019, and co-chairman of ICAS 2009, INTERNET 2010,
MARSS 2011, IEEE MASS 2011, SCPA 2011, ICDS 2012, 2nd IEEE SCPA 2012,
GreeNets 2012, 3rd IEEE SCPA 2013, SSPA 2013, AdHocNow 2014, MARSS 2014,
SSPA 2014, IEEE CCAN 2015, 4th IEEE SCPA 2015, IEEE SCAN 2015, ICACCI 2015,
SDRANCAN 2015, FMEC 2016, 2nd FMEC 2017, 5th SCPA 2017, XIII JITEL 2017,
3rd SDS 2018, 5th IoTSMS 2018, 4th FMEC 2019, 10th International Symposium
on Ambient Intelligence, and 6th SNAMS 2019, and local chair of MIC-WCMC
2013 and IEEE Sensors 2014). He is IEEE Senior, ACM Senior and IARIA Fellow.

Yu-Wen Chen received his B.S. and M.S. degree from
Department of Computer Science, National Chiao Tung
University, Taiwan in 2016 and 2018, respectively. His
research interests include internet technologies and
distributed computing.

Shyan-Ming Yuan received his Ph.D. degree in Com-
puter Science from the University of Maryland, College
Park in 1989. In 1990, he was an Associate Professor at
the Department of Computer and Information Science,
National Chiao Tung University, Hsinchu, Taiwan. Since
1995, he has been a professor at the Department
of Computer Science, National Chiao Tung University.
He is also the Director of Library at National Chiao
Tung University. His current research interests include
distance learning, internet technologies and distributed
computing.

https://etherscan.io/chart/transactionfee
https://etherscan.io/chart/transactionfee
https://etherscan.io/chart/transactionfee
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb37
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb37
http://refhub.elsevier.com/S0167-739X(18)32833-4/sb37
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
mailto:jlloret@dcom.upv.es

	Elastic and cost-effective data carrier architecture for smart contract in blockchain
	Introduction
	Related work
	Blockchain
	Oracle

	System design and implementation
	Mission manager
	Task publisher
	Filter module
	Decoding module
	Publishing module

	Worker

	Evaluation results and discussions
	Evaluation results
	Discussions

	Conclusions
	Acknowledgments
	Conflict of interest statement
	Declaration of confliction interests
	References

