

Customer Confidential Security Document

1 Customer Confidential Security Document

INTELLIGENT CYBER SECURITY & RISK MANAGEMENT

 Penetration Test Technical Report

Prepared for The Linux Foundation

Authored by Graham Shaw

12th April 2018

Version 1.0

Customer Confidential Security Document

Customer Confidential Security Document 2

INTELLIGENT CYBER SECURITY & RISK MANAGEMENT

 Penetration Test Technical Report

Nettitude provides a wealth of knowledge, expertise and

experience in regards to Data Security. We provide

comprehensive vulnerability assessment, penetration testing

and application assessment services. Our team of dedicated

security consultants deliver best in class testing capability as

well as strong remediation advice and guidance.

Customer Confidential Security Document

Customer Confidential Security Document 3

REPORT CONTENTS

1 Distribution List .. 4

1.1 Nettitude .. 4

1.2 The Linux Foundation ... 4

1.3 Revision History .. 4

2 Engagement Particulars .. 5

2.1 Background .. 5

2.2 Rules of Engagement .. 5

2.3 Scope .. 5

2.4 Testing Window Observations / Constraints .. 5

3 Findings .. 7

3.1 Software Security Assessment ... 7

4 Analysis: Software Security Assessment .. 8

4.1 Critical: Blocks can be signed more than once by the same peer.. 8

4.2 Medium: Transactions can be signed more than once by the same signatory10

4.3 Low: IP addresses can be made permanently unusable using the add peer command11

4.4 Low: Potential denial of service attack due to memory leak ..12

Customer Confidential Security Document

Customer Confidential Security Document 4

The contents of this report belong to The Linux Foundation. They have been provided by Nettitude based on the work detailed within this report and

were accurate at the time of testing. Nettitude presents no guarantee that the details in this report are a true reflection of the tested environment at

the present time.

1 DISTRIBUTION LIST

1.1 Nettitude

Name Title

Graham Shaw Security Consultant

Kristopher Vasilik Account Manager

1.2 The Linux Foundation

Name Title

David Huseby Security Maven, Hyperledger

1.3 Revision History

Version Issue Date Issue By Comments

0.1 4th April 2018 Graham Shaw Initial Draft

0.2 10th April 2018 Jose Lopes Quality Assurance

0.3 10th April 2018 Kristopher Vasilik Quality Assurance

1.0 12th April 2018 Graham Shaw Final

Customer Confidential Security Document

Customer Confidential Security Document 5

2 ENGAGEMENT PARTICULARS

2.1 Background

This report serves as technical documentation for the recent software security assessment performed

for The Linux Foundation by Nettitude. For a high-level assessment of the tested software, please refer

to the associated management report:

 MANAGEMENT_REPORT_Security_Assessment_The_Linux_Foundation_March_2018_v1.0.pdf

2.2 Rules of Engagement

The penetration test was performed in line with the following rules of engagement:

 Nettitude’s white box testing methodology was used.

 Social engineering was not permitted.

 The software was installed on equipment under the control of Nettitude for testing. Testing of

systems belonging to The Linux Foundation was not permitted.

 The testing and reporting was performed during the period 28 February to 29 March 2018 (5

days for penetration testing, 2.5 days for fuzzing, 6 days for code review, 3 days for reporting).

 Any results held in this report relate to the status of the ‘develop’ branch of the repository during

the period of the assessment.

2.3 Scope

Nettitude were tasked with performing a penetration test with the following scope:

2.4 Testing Window Observations / Constraints

The client was offered three options for the required level of thoroughness for this assessment. The
level chosen was described as "medium assurance" representing a balance between thoroughness and

affordability. For code review this entailed:

 Identifying and excluding from consideration ancillary files such as test harnesses and mock

implementations.

 Enumerating the endpoints which comprise the outward-facing boundary of the attack surface.

 Mapping these endpoints to the functions which implement them.

 Tracing the flow of untrusted data through these functions, and (to the extent time permitted)

through other functions directly or indirectly invoked by them.

Repository Description

https://github.com/hyperledger/iroha Core repository for Iroha

Customer Confidential Security Document

Customer Confidential Security Document 6

(This does not mean that the review was limited to code that was closely associated with the endpoint
handlers. The criterion was the extent to which they process untrusted data, regardless of how deep

within the system they were located.)

In addition to the above, semi-automatic scanning of the whole codebase (excluding ancillary files) was
performed to look for security issues capable of being found in this way. Examples include injection into

format strings and random number generation.

Fuzzing was scoped for the REST API which Iroha had at the time. It was discovered early into the

assessment that this had been replaced with a gRPC API which is significantly more difficult to test
(mainly due to lack of off-the-shelf tooling). For this reason, and due to other delays in the early stages

(see below), Nettitude was unable to make more than a token attempt at fuzzing.

Code review was the most productive assessment method applied, resulting in the discovery of what
appears to be a subtle but very serious vulnerability which could not plausibly have been found either

by fuzzing or by penetration testing. Nevertheless, productivity would have been improved greatly if
more detailed and more accurate documentation had been provided, both within the source code and

at an architectural level.

A significant amount of time was lost due to unclear or outdated instructions, including in particular
obsolete documentation and code published in what ought to be authoritative locations (including the

main Iroha repository itself).

Customer Confidential Security Document

Customer Confidential Security Document 7

3 FINDINGS

3.1 Software Security Assessment

Description Severity Ease of Exploitation Recommendation Reference

Blocks can be signed more than once by the same
peer

Critical Moderate
Store signatures in map

not set
4.1

Transactions can be signed more than once by the

same signatory
Medium Moderate

Store signatures in map

not set
4.2

IP addresses can be made permanently unusable

using the add peer command
Low Complex

Provide method for IP

addresses to be reused
4.3

Potential denial of service attack due to memory
leak

Low Trivial Use a shared_ptr 4.4

Customer Confidential Security Document

Customer Confidential Security Document 8

4 ANALYSIS: SOFTWARE SECURITY ASSESSMENT

4.1 Critical: Blocks can be signed more than once by the same peer

Description of the Issue

When Iroha needs to check how many peers a block has been signed by, it does so by:

 Collecting the signatures in a container of type SignatureSetType, which (as its name

suggests) has set-like semantics.

 Taking the number of elements in this container as the number of peers.

The unstated assumption is that the number of distinct signatures is equal to the number of distinct

peers. For an unmodified implementation of ed25519 this assumption would be true, because the

signing function is deterministic: if you sign a given message with a given keypair multiple times, the

signature is always the same.

In older digital signature algorithms this is typically not the case, due to the signature being dependent

on a nonce value which is chosen at random during each signing operation. ed25519 also has a nonce,

but it is chosen deterministically by hashing some of the input data. This raises the question: can

ed25519 be modified to use a random nonce without breaking compatibility?

Nettitude has demonstrated that this is indeed the case. For example, using a keypair of:

 9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60d75a980182b10

ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a

and a message of:

 48656c6c6f20576f726c64

Nettitude was able to generate three distinct signatures:

 65fa037aeb893265f849d4a1767ca339c92292d9d7a6df1be7ae91e8cc1dc7651807d1340ec3

bb99451487c466470a9165a97b07e01f68faad71c8fa6444950e

 e4a09a175338fbc8cf31bee80f9833dfd9884b3c586a8413a57f24dda7db77a795f20e493ad70

a4ef8e3b555dde3917528d4dddb9032422214c8e7e688d61c07

 04477edfba1b03aae53384d79de35af3f5081bf334c98b02158384467db9e3e422948738d1ff9

e616cc53c8a1d1148c0e27de13de9bb7dac471b870ba319c806

all of which appear to be valid when checked using a standard implementation of ed25519.

(To be clear, the signing algorithm used above can no longer be described as ed25519, and nor is it

necessarily as secure: there is a good reason why the designer chose to use a deterministic nonce.

However, it is only the verifiability of the signatures that is at issue here.)

Given this capability, a malicious peer would be able to construct a block containing an illicit transaction,

and attach multiple signatures to that block created using its own keypair. There is no practical limit to

the number of such signatures that can be generated, so one peer could add enough of them to look

like a supermajority. Nettitude believes (but has not yet proved) that the peer would then be able to

successfully propagate that block to other peers. Evidence for this includes:

Customer Confidential Security Document

Customer Confidential Security Document 9

 Analysis of the classes ChainValidatorImpl and SupermajorityCheckerImpl, which use

SignatureSetType as described above.

 Successful demonstration to the proof of concept stage for a similar attack against multi-

signatory accounts (see finding below), affecting code which is either similar or shared.

This is sufficient for Nettitude to be very confident, at a minimum, that there is a serious weakness in

the code which ought to be fixed. What has not been ruled out, in the absence of an end-to-end

demonstration, is the possibility of there being some other obstacle which would prevent the block from

propagating. However, all of the currently available evidence points towards this being an exploitable

vulnerability, and an initial discussion with a member of the Iroha development team reached the same

conclusion.

The impact of one peer being able to unilaterally add blocks to the blockchain, without having to go

through the normal consensus-forming process, is to comprehensively undermine the security

guarantees which Iroha seeks to provide, and to turn the distributed nature of the blockchain network

from an asset into a liability (since any peer would be able to execute the attack).

Nettitude Recommends

 Instead of storing the signatures in a set-like collection, use a map-like collection indexed by

the public key to which the signature corresponds.

Further Reading

 Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang. High-speed high-

security signatures. Journal of Cryptographic Engineering 2 (2012), pp77–89

(https://ed25519.cr.yp.to/ed25519-20110926.pdf)

https://ed25519.cr.yp.to/ed25519-20110926.pdf

Customer Confidential Security Document

Customer Confidential Security Document 10

4.2 Medium: Transactions can be signed more than once by the same signatory

Description of the Issue

Iroha allows multi-signatory accounts to be created, with behaviour analogous to a multi-signatory bank

account. Each account has an 'account quorum', which is the number of signatories needed to sign-off

a transaction.

When Iroha checks how many signatories a given transaction has been signed by, it does so using

essentially the same method as for peers and blocks:

1 Collecting the signatures in a container of type SignatureSetType.

2 Taking the number of elements in this container as the number of peers.

A similar method of attack can be used as well. Nettitude was able to achieve a partial demonstration

of this using the following method:

1 The iroha-ed25519 library was modified to use a non-deterministic nonce, then built and

installed within the development environment.

2 The Iroha server already reports whether transactions pass validation, however it was further

instrumented to report the number of signatures. This was done in the function

StatefulValidatorImpl::signaturesSubset, near to the point in the execution path where the

number of signatures is normally checked.

3 Iroha was then built against the modified ed25519 library, and the Python API built against

Iroha.

A transaction was signed three times using the same keypair, then submitted to the Iroha server. The

server reported that it passed validation with the three signatures intact.

During investigation of this vulnerability, Nettitude found what appears to be a further bug in the

signature checking code which would prevent multi-signatory accounts from working as intended: rather

than checking that the signatures are a subset of the signatories, it appears to require that the

signatories be a subset of the signatures. If that is a correct interpretation then it would make this

vulnerability non-exploitable as the code stands currently, but that would likely be a temporary state of

affairs.

Assuming that the vulnerability does become exploitable, its impact would be that a single signatory

would be able to authorise transactions on an account configured to require multiple signatories. This

is moderately serious:

 It has the potential to facilitate embezzlement.

 However, it is only exploitable by users who are already signatories to the account.

 It is only applicable to multi-signatory accounts configured to require more than one

signature to authorise a transaction.

Nettitude Recommends

 Instead of storing the signatures in a set-like collection, use a map-like collection indexed by

the public key to which the signature corresponds.

Customer Confidential Security Document

Customer Confidential Security Document 11

4.3 Low: IP addresses can be made permanently unusable using the add peer

command

Description of the Issue

The documentation for the add peer command indicates that a given IP address can only be added once

to a given Iroha network (since it is a validation constraint that the address has not already been added).

Figure 1: Validation constraints for add peer command

A public key is specified at the time when the IP address is added. No evidence is required that the

owner of the IP address is in possession of the corresponding private key.

There is not, so far as Nettitude has been able to determine, any mechanism for removing or modifying

a peer once it has been added. Therefore, an attacker with the ability to add peers would also have the

ability to permanently exclude any number of IP addresses from the network, by associating them with

public keys not known to the IP address owners.

Adding peers requires the CanAddPeer permission, which would presumably be issued sparingly.

Nevertheless, even though this attack may be difficult to carry out, the irreversibility of the effect makes

it a significant cause for concern.

Further issues arising from this limitation are that:

 A peer with reason to fear that its keypair has been compromised is discouraged from switching

to a new one, due to the need to switch to a new IP address too.

 A keypair known to have been compromised cannot be locked out.

Nettitude Recommends

Options for resolving this issue include:

 Allowing multiple peers to be registered at the same IP address (although this might increase

the risk of a Sybil attack);

 Providing an API call allowing a peer to be removed from the network.

 Providing an API call allowing the public key associated with a peer to be changed.

 Implementing a two-phase registration process, whereby a peer is not fully added until it has

begun participating in the network from the specified IP address (although this would not be

immune to attack, and does not help with usability concerns such as what happens if a peer

loses its private key).

Customer Confidential Security Document

Customer Confidential Security Document 12

4.4 Low: Potential denial of service attack due to memory leak

Description of the Issue

Nettitude has found a memory leak in the Iroha daemon which can be triggered remotely. During a test

run during which the supplied example script “tx-example.py” was executed 5000 times, a total of

1920288 bytes in 20003 blocks was leaked. This corresponds to an average of 384 bytes lost per

iteration.

Taken to extremes, this behaviour could be used to mount a denial of service attack (although the

number of transactions required would be large).

An attempt was made to demonstrate this using the ulimit command to constrain the amount of memory

available to the irohad daemon. This was nominally successful, resulting in a segmentation fault,

although fragmentation of the heap will also have contributed to that outcome.

The cause in all of the cases observed appears to be failure to delete the object returned by the function

shared_model::interface::Transaction::makeOldModel(). Currently this is returned using a built-in

pointer. In some instances this is then converted to a shared_ptr by the caller, but not all callers do this

(and in any event, this course of action is less safe than using make_shared).

Nettitude Recommends

 Alter makeOldModel to return a shared_ptr, with appropriate changes at points where it is

called.

Note

This attack method was originally conceived by Nettitude security researcher Richard Dennis.

