

Customer Confidentia l Securi ty Document 1

Security Assessment Management Report

Prepared for: The Linux Foundation

System: Hyperledger Sawtooth
Type: Security Assessment

Author: Graham Shaw

Date: 13th December 2017
Version: 1.0

Customer Confidentia l Securi ty Document 2

Report Contents

Report Contents ___ 2

High Level Assessment __ 3

Overall Security Posture ___ 3

Nettitude were able to: ___ 3

Limitations__ 3

System Analysis__ 4

Next Steps __ 6

Distribution List__ 7

Revision History ___ 7

file:///C:/Users/iraklis/Documents/Internal/Management%20Report/try2/fun/MANAGEMENT_REPORT_Linux_Foundation_Hyperledger_December_2017_v1.0.docx%23_Toc500949592
file:///C:/Users/iraklis/Documents/Internal/Management%20Report/try2/fun/MANAGEMENT_REPORT_Linux_Foundation_Hyperledger_December_2017_v1.0.docx%23_Toc500949593

Customer Confidentia l Securi ty Document 3

High Level Assessment

The Linux Foundation engaged with Nettitude in October 2017 in order to assess the overall security

posture of their Hyperledger Sawtooth software product.

Based on The Linux Foundation’s risk profile, primary security concerns and the vulnerabilities

identified at the point of the engagement, Nettitude have found Sawtooth to require attention.

Limitations
Some limitations and constraints were encountered during the engagement. Please refer to the

technical report for more details.

Authentication

API Abuse

Configuration

Protocol Design

Vulnerability category breakdown

Critical High Medium Low

1

5

2

Severity clasification

Critical High Medium Low

Nettitude were able to:

 Access the validator private key from an

unprivileged account

 Show that the CHALLENGE

authentication method was vulnerable

to replay attack

 Cause connections to the REST API to

hang

Overall Security Posture

STRONG

MODERATE ATTENTION

ATTENTION REQUIRED

IMIDIATE ATTENTION

Customer Confidentia l Securi ty Document 4

System Analysis

A default installation of Sawtooth allows the private key for the validator to be read by any other user

of the system in question. On the face of it this is a potentially serious vulnerability, and it is certainly

not good practice, however it is mitigated by the fact that most machines hosting Sawtooth validators

are unlikely to have any users who are not also administrators.

Sawtooth supports two different authentication mechanisms, TRUST, and what is supposed to be a

more secure method called CHALLENGE. For the latter, the server sends a challenge to the client,

which the client is supposed to respond to in a manner that demonstrates it has possession of the

authentication credentials.

Unfortunately, the server does not appear to keep a copy of the challenge that was issued, and instead

trusts the copy that is returned by the client. This means that the client can substitute any challenge

of its choosing, including one recorded from a previous session, therefore negating any advantage

from having a two-way challenge-response protocol. However, a replay attack would be difficult to

mount in practice if ZMQ encryption has been enabled (as it should be on production systems).

There are several classes of request which will cause connections to the REST API to hang until they

time out. This is due to insufficient validation of the supplied parameters before they are forwarded

to the validator. This does not prevent the REST API from accepting and processing other connections

when done on a small scale, however each connection will consume resources on the server while it

is open, therefore this behaviour would make it easier to mount a de nial of service attack.

There does not appear to be any upper limit on the size of a block, opening the possibility of a

malicious node performing a denial of service attack by adding arbitrarily large amounts of data to the

blockchain.

For comparison, the Bitcoin blockchain grows at a very predictable rate due to fine-tuning of the

difficulty of adding new blocks, and a hard, upper limit on the size of each block. This is an important

consideration because, once they become a confirmed part of the chain, b locks must be stored

indefinitely and are very difficult to remove. Adding a sufficiently large amount of data would deny

service until a sufficient number of nodes were upgraded, or the blockchain was forked.

Session management for the ZMQ interface to the validator depends upon ZMQ providing encryption

at the transport layer, however it defaults to unencrypted operation if the required key pair is absent

from the configuration. It would be better for the validator to refuse to run unless the key pair was

provided, or the user has explicitly requested unencrypted operation (which would only be

appropriate for testing).

Sawtooth was found to be vulnerable to a method of attack known as log injection, which is made

possible when non-validated inputs are written verbatim to the log. This would not have any direct

business impact, however as part of a larger attack it might be used to fabricate log entries to mislead

incident response efforts, or to corrupt the log to prevent it from being processed by automated

monitoring systems.

Customer Confidentia l Securi ty Document 5

The Ubuntu-packaged network services are all run from the same account, ‘sawtooth’. Whilst this is

considerably better than running them as root, it would be better still if a separate account were used

for each subsystem. This will reduce the risk of a vulnerability in a lower-value subsystem being used

to pivot to a higher-value subsystem.

Notwithstanding these findings, the software was found to be generally well written and documented.

Particular points of note include:

 Good modularity and encapsulation of subsystems.

 Use of reputable third-party libraries to provide cryptographic primitives, which is (usually)

less risky than re-implementing them.

 Good replay protection in PoET.

 Use of the Ironhouse pattern.

 Use of chained request handlers in the validator (reminiscent of the architecture of Apache),

which makes it very clear what validation and authentication procedures are applied at each

endpoint.

Customer Confidentia l Securi ty Document 6

Next Steps

Nettitude recommends that The Linux Foundation perform the following post engagement activities

in the order of priority indicated.

 Activity Description Priority

1 Debrief from Nettitude

Nettitude will deliver a formal debrief to

The Linux Foundation in order to ensure

that the findings of this engagement have

been fully comprehended and to help

assist in the formulation of a remediation

plan.

++++

2 Validator private key
Restrict access to sensitive files, as per

recommendation in technical report. +++

3 CHALLENGE authentication

Do not trust the copy of the challenge

returned by the client. Instead, keep a

copy of the challenge as issued by the

server, and use that for validation of the

response.

++

4 Validation in REST API

Validation of arguments passed to the

REST API should be improved, particularly

in the case of data that will be forwarded

to the validator.

+

Customer Confidentia l Securi ty Document 7

Distribution List

Nettitude Name Title

Graham Shaw Security Consultant

Richard Dennis Security Consultant

Richard Hicks Security Consultant

Kristopher Vasilik Key Account Manager

The Linux Foundation Name Title

David Huseby Security Maven, Hyperledger

Revision History

Version Issue Date Issue By Comments

0.1 30th November 2017 Graham Shaw Initial Draft

0.2 6th December 2017 Richard Hicks Quality Assurance

0.3 6th December 2017 Kristopher Vasilik Quality Assurance

1.0 13th December 2017 Graham Shaw Final

The contents of this report belong to The Linux Foundation. They have been provided by Netti tude based on

the work detailed within this report and were accurate at the time of testing. Nettitude presents no guarantee

that the deta i l s in this report are a true reflection of the tested environment at the present ti me.

