

Ethereum Virtual Machine
and Execution Environment

Overview

Before Ethereum

● Specialized blockchains/protocols for
specialized applications
– Bitcoin

– Namecoin

– Colored coins

● “Swiss army knife” protocols
● Problem: insufficiently general

– How can a protocol be future-compatible with
applications which have not been invented yet and
which we know nothing about?

Ethereum

● Core idea: instead of explicitly supporting
applications, support a native programming
language

● Business logic for applications can be
implemented in this language

● Transactions
– Bitcoin: send X bitcoins from A to B

– Namecoin: register domain X, set IP address of
domain X to Y (simplified)

– Ethereum: call function F of contract C with
arguments A (roughly)

Ethereum Account Model

● Two types of accounts
– “Externally owned account” (controlled by private key)

– Contract (controlled by its own code)

– Note: this will change in future hard forks as we move
toward a one-account-type model where private-key-
controlled accounts are themselves implemented via
contracts

● Accounts have a 20-byte address
● Contracts also have:

– Code (static)

– Storage (key/value store, can only be read/written by
parent account)

Ethereum Account Model

● A transaction contains the following key parameters:
– Gas limit

– Destination address

– Data

– Sequence number + signature

● If the destination address has code, the code runs
● Code has the ability to:

– Read/write to storage

– Send “internal transactions” to other accounts
● These transactions give the parent execution instance a return

value, hence they can be viewed as function calls

Ethereum Account Model

● Accounts can be used for multiple functions
– Specify an access policy for an individual or organization

(“eg. any of these 5 keys can spend up to 100 coins per day,
but if 3 out of 5 approve an operation then it can spend any
amount”)

– Maintain a database of who owns how much of an asset and
process “send” operations

– Specify an agreement between multiple parties to split the
funds between them based on some conditions (eg. financial
derivatives)

– Escrow

– Store data that can be queried by other contracts (eg. Info
about which accounts are authorized users for some system)

Ethereum Virtual Machine

● Inputs: code, data, environment variables (eg.
block number, timestamp)

● Externs: read/write storage, make sub-calls
(aka internal transactions), make logs, etc

● Theoretically, many different virtual machines
can be modified and “hooked up” to this
interface, so you can use the EAM without the
EVM

EVM Requirements

● Small code size (so that very many contracts from
many users can be stored by one node)

● VM security designed around running untrusted
code from arbitrary parties

● Multiple implementations (for cross-checking, and
to mitigate developer centralization in the public
chain)

● Perfect determinism (for consensus)
● Infinite loop resistance

– This itself must be accomplished perfectly
deterministically; timeouts are a no-go

Metering/Gas

● Approximately: count computational steps
● If a transaction or sub-call “runs out of gas”, it is

fully reverted (to preserve atomicity), though the
gas is still treated as fully consumed (to prevent
DoS attacks)

● Many operations have different gas costs; this
incorporates:
– Runtime

– Consumption of memory and storage

– Consumption of bandwidth

– “Pollution” of the log bloom filter

Pre-compiles

● Some cryptographic operations are currently too
slow to be done on EVM

● Hence, we provide native versions that can be
used by calling accounts at pre-specified
addresses

● 1 = elliptic curve signature verification
(technically, public key hash recovery)

● 2 = SHA256
● 3 = RIPEMD160
● 4 = identity (for efficient data copying)

ABI

● Most contracts have multiple functions that you
may want to call

● Idea: first 4 bytes of transaction/call data are
the function identifier, remaining data
represents arguments in a standardized format
(each argument padded to 32 bytes to increase
efficiency of VM processing)

High-level languages

● Developers do not want to program in raw EVM
assembly

● Write code in higher-level language, compiler
compiles down to EVM code

● HLLs include: Serpent, LLL, Solidity (most popular)
● Currently in progress: formal verification on Solidity
● Future ideas: total functional HLLs, DSLs (eg. a

financial DSL focusing on flows as the
fundamental unit)

Integration opportunities for
Hyperledger

● Keep existing account model, offer EVM as an
option for computation
– Contract storage?

– Internal transactions / calls?

● Integrate both account model and EVM
● Offer EVM, work together on account model to

have desired properties for both smart
contracts and other use cases?

Future development

● Merge two account types
– Contract code itself would specify account “access policy” for all

accounts

● Sharding
– Allows scalability through parallelizability, through restricting

transaction effects to particular address ranges

– “Cross-shard” operations must be done asynchronously

● Increase efficiency for implementing cryptography on top
of EVM
– Additional precompiles (eg. ECMUL/ECADD for ring signatures,

bigint math for RSA)

– Experimental architecture based on a metering trans-compiler
for WASM code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

