Hyperledger Indy
Public Blockchain

Hyperledger Bootcamp Russia

Presented by Alexander Shcherbakov

erernym

2> .« HYPERLEDGER

@ .‘,““ I N DY

e Indy has its own implementation of Distributed
Ledger not dependent on any other blockchain

platform
e Indy has its own implementation of a PBFT-like

consensus protocol

esLer

i.. HYPERLEDGER

@ _‘,“‘. I N DY

e Indy is one active Hyperledger projects .\'\

e Indy deployment (Sovrin) is in production for /.

more than 2 years
Sovrin Networks:

e Builder Net
® Staging Net
® Main Net

esernym

Agenda

Indy-Plenum and Indy-Node
Architecture Overview
Ledger

Consensus Protocol

o RBFT
o Moving to Aardvark
o Plenum protocol specific

5. Summary and Key Features

e

esernyrm

Indy-Plenum and Indy-Node

e Indy-Plenum:
o https://github.com/hyperledger/indy-plenum

o Consensus Protocol
o Ledger Indy-Node

e Indy-Node:
o https://github.com/hyperledger/indy-node

o Depends on indy-plenum
o ldentity-specific transactions

SCHEMA
txn

CRED_ DEF
txn

GET SCHEMA GET CRED DEF
request request
Plenum

™
o

esLer

Indy-Plenum and Indy-Node

esLer

Indy is a Ledger purpose-build for Identity

Can be used as a general-purpose Ledger
o Extend Plenum
o Custom transactions (pluggable request

Plugin A

Txn A

handlers)
o Plugins
Plugin B
Txn C
Txn D

Plenum

Indy-Plenum and Indy-Node

e \Written in Python

e Dependson
o ZMQ
o Indy-crypto (Ursa)
o Libsodium
e Message-driven and modular architecture
o Recent refactorings improved this

e Extensive test coverage
o TDD
Unit tests
Integration tests
Property-based and simulation tests
System tests
Load tests (usually 25 Nodes)

O O O O O

eLerny
e

Architecture Overview: Indy Blockchain Type

9 BITCOIN is decentralized money.
Q ETHEREUM is decentralized applications.
.‘,‘5 INDY is decentralized identity.

Validation

-
Bitcoin
Etherium

V8 Enterprise Ethereum Hyperledger Fabric
Alliance Hyperledger Sawtooth

R3 Corda

Access

esern

Architecture Overview: What data is on Blockchain

e No private data is written to the Blockchain
e Only Public data (such as Issuer’s Public Key) is there

GDPR

Architecture Overview: Validator and Observer
Nodes

e Validator

o Handles Writes and Reads
o These are the nodes that
come to consensus

vValidator I e Observer*

pool o Handles Reads
o Keep their “state” in sync
with the Validators

Observer
Pool
(Reads, Standbys)

Clients
Write to Validators
Read from Observers

*Partially implemented

Architecture Overview: Validator Nodes

ZMQ as secure transport
e TCP-based

e CurveCP, libsodium
e Authenticated encryption, no digital
signatures

o Authentication: Poly1305 MAC
o Symmetric key crypto: XSalsa20
o Public Key crypto: Curve25519

Plenum Consensus
Protocol (RBFT)

BLS
multi-sig

e Each Node replicates all
ledgers

e Each Ledger has a Merkle Tree

e Most of the Ledgers have State
based on Patricia Merkle Trie

N=3F+1
e N - number of nodes
e F - max number of
malicious nodes

Architecture Overview: Write Requests

Write Request
(transaction)

F+1 equal

(Multi) Signed by the
user
replies e Digital Signature:
Ed25519

esLer

Architecture Overview: Read Requests

Just 1 Reply:
e BLS multi-sig
e State (audit) proof

Read
Request

£

No signature

esLer

Architecture Overview: Authentication

Authentication is based on the information present
in the Ledger

e \Write Requests:
o Must be signed (Ed25519 digital signature)
o Signature is verified against a Public Key stored on the
Ledger (DID txn)
o Every transaction author must have a DID transaction on the
Domain Ledger
e Read Requests:
o Anyone can read, no authentication is required

esLer

Architecture Overview: Authorization

Authorization is based on the information present in the
Ledger

e \Write Requests:
o There is a role associated with every DID
o There are configurable auth rules (stored in Config Ledger) which
can define authorization policy for every action
o The rules may define how many signatures of the given role are
required
o The rules can be composed by OR/AND expressions
e Read Requests:
o Anyone can read, no authorization is required

esern

Add a new SCHEMA:

(1 TRUSTEE) OR
(2 STEWARDS)

Ledger: Transaction Log and Merkle Tree

- LLUSENEE
e |edger: Transaction —
Log Merkle

o Ordered log of transactions
o Merkle Tree for the whole ledger
o No real blocks

e RocksDB as key-value storage
e MessagePack for serialization

e Ledger catch-up procedure
o On Start-up

Nodes

Merkle Tree Hash —»

o On lagging behind

esLer

Merkle
Tree

Ledger: Merkle Tree

1. Merkle Tree Root Hash

o Ledger Catchup

o Transaction Validation
2. Consistency Proof

o Ledger Catchup
3. Inclusion (audit) Proof

o Reply to written

transaction
o GET_TXN reply

esLer

Ledger: Ledger Types

Indy has multiple Ledgers (each with a separate transaction log and a merkle
tree):

e Audit Ledger e Config Ledger

o Pool config parameters
o Used in transaction validation
e Domain Ledger

o ldentity-specific transactions
o Application-specific transactions

o Order across ledgers

e Pool Ledger
o Transaction for every Node in the pool
o Adding, editing, removing nodes

e Plugins can add new ledgers

eLerny

[Gmwﬁs 1: add Nodel
Ledger: Pool Ledger Lot S

4: add Node 4
e A new Pool is built from genesis lﬂ:

transactions M
e Nodes can be added and removed w
from the Pool by sending a NODE

: edit IP address for Node 1
: add Node 5

: add Node 6

: remove Node 2

: remove Node 3

sending a NODE txn to the Pool w

Ledger Pool
— Ledger

e*sLer Node 1 Node 4 Node 5 Node 6

txn to the Pool Ledger
e Node’s data can be modified by

O 00 J oy Ul

Ledger: Audit Ledger

esern

Why

(@)

O

(@)

o O O O O

Synchronization between ledgers
m Global sequence number between ledgers
m Ledgers are caught up sequentially and one by one

Recovering of pool state after startup
External audit

Audit transaction as a Block:

Batch seq no

View no

Corresponding ledger root hash
Corresponding ledger size
Current Primaries

Domain
ledger

Audit
ledger

"

_|1: pool txn
t2: domain txn

: pool txn
: config txn

3
~ ~ 14
\\ Sl 5
*v1°5: domain txn
6

~6: domain txn

(

State

esern

Each Ledger (except Audit Ledger) has a

State
o Pool State
o Config State
o Domain State

Map ordered list of transactions to the

current state as dictionary
o Dynamic Validation
o Read requests.

Merkle Patricia Trie (as in Ethereum)
o Radix Tree + Merkle Tree

o Ledger Merkle Tree for Lists (ordered txn log)
o Patricia Merkle Trie for Dicts

Key-value storage - RocksDB.

T

10™—DID A, PUB KEY
24: DID A, PUB KEY A2
36: DID B, PUB KEY Bl

102: DID B, PUB KEY B2

25: DID A -> PUB_KEY A3

edger

{DID A :
DID B :

PUB KEY A3,
PUB KEY B2}

State

Consensus Protocol: BFT

esLer

No generals trust any other
one general

Each independently decides
to attack, if two others also
commit to attack

With four generals, we can
have one faulty general, and
we can still agree

Consensus Protocol: RBFT

e Byzantine Fault Tolerance
o Built on RBFT: Redundant Byzantine Fault Tolerance.
o Improves over PBFT (by Miguel Castro and Barbara Liskov) by executing several protocol
instances in parallel

e Better throughput, lower latency than proof-of-work
e Performs better compared to its predecessors under dynamic load and under
attack

eLerny

Consensus Protocol: RBFT Three Phase Commit

PRE-PREPARE

REQUEST I PROPAGATE

PREPARE

COMMIT

REPLY

— — +— —

L4
— -— — —

Redundant agreement performed by the replicas

Consensus Protocol: RBFT Redundancy with Active
Monitoring

‘ Clients l
Node 0 Node 1 Node 2 Node 3
Master : - . y |
Protocol . , .
Instance Primary Replica Replica Replica
Backup ' = - = !
Protocol Replica Primary Replica Replica
Instance T T T T I

Consensus Protocol: View Change

esern

Protocol is leader-based

Leader may behave maliciously
o Disconnected/Stopped
o Degraded performance
o Inconsistent Data (Ledger/State)

If the Pool realizes that a Leader needs to be changed, it starts a View
Change process

o RBFT has multiple instance of the protocol that compare performance, and decide if master
protocol is degraded

View Change is implemented the same way as in original PBFT paper
o Avariant without digital signatures

Plenum has a couple of enhancements to make sure the data is consistent
during the View Change

Consensus Protocol: View Change

e All transactions that could be |

Node 1

Node 2 Node 3 Node 4

potentially ordered on at least one
correct Node are eventually ordered
on all Nodes pscamoni00
e View Change procedure: PPSeaiont20
o Each node propagates its prepared
certificate to other nodes (that is Q
transaction it could potentially ordered)
o Anew Leader decides which transactions = q .
e—-oraer rom
need to be re-ordered and do the ppSeqNo=100

re-ordering ti11
ppSeqNo=120

Checkpoint:
ppSegNo=100

Checkpoint: Checkpoint:
ppSegNo=100 ppSegNo=100
Prepared: Prepared: Prepared:

ppSegNo=119 ppSegNo=115

ppSegNo=120

esLer

Consensus Protocol: Moving to Aardvark

e Although RBFT protocol may be quite sensitive to malicious Leaders in some

conditions, it's slower than other PBF T-like protocols
o N~3 vs NA2
e \WVe are expecting to change consensus protocol to Aardvark
PBFT-like protocol with the same view change implementation
Has just 1 protocol instance (like in PBFT and unlike RBFT)
Does regular View Changes
Probability of View Change depends on the Leader’s performance

O O O O

esern

Plenum Protocol Specific

e 3PC Batching

o Multiple transactions are ordered as one in a /Txnl //TXH2 //Tan /

batch
e Data Consistency check as part of

Consensus Protocol

o Apply batches as proposed by the Leader to the
Ledgers and States => uncommitted merkle

root
. PRE_PREPARE: batches
o Compare uncommitted merkle root hash - Batch of
. y . txns
with the Leader’s one (in PrePrepare message) - Leader’s
. . merkle
o This guarantees Data Consistency root: root B

o If Leader sends inconsistent Data - View Change ~ Merkle root A
happens

MerkIe root B

esern

Plenum Protocol Specific

3PC Batch (PrePrepare)

e Dynamic validation based on the current

uncommitted state /Txn 1 // Txn 2 // Txn 3/

o When a PrePrepare is applied, each transaction must

pass the dynamic validation _|\ /L J\/L _|\ /L

o Dynamic validation is performed against the current Verified against
uncommitted Ledger or State

Y =20 4
[g L
e Usage of Audit Ledger - -

Audit Ledger is used to confirm data consistency as part
of consensus

o Audit Ledger’s root is used Checkpoint

esern

Plenum Protocol Specific /

e Sequential applying of PrePrepares
o We may have more than one Batch (PrePrepare) / ;;:g;;giﬁ’ M
in flight, but all PrePrepares are applied

sequentially (no gaps) to check data consistency
PrePrepare: Do not
ppSegNo=13 Apply

e Message Requests
o If a message from a Node is lost/missing, it's PrePrepare: - Apply
ppSegNo=12 ppSegNo=12

requested from this Node
- Apply
ppSegNo=13

esern

Plenum Protocol Specific: BLS multi-signature

Sufficient to send Read requests to just one Node: ﬁ% \ st

e State (Audit) Proof E&

o Merkle Tree Proof that the result belongs to a State

(Ledger) Merkle Tree with the given root

e BLS multi-signature against the merkle tree A[Wetrustthemtasnwas }

signed by the nodes in the

FOOt pool
o All nodes multi-sign the merkle tree root of Ledgers and s e
States as part of Consensus Procedure [~] (]
P Y P
The client verifies State (Audit) Proof and BLS :l Q pﬁ
mult-sig L L L L) L))
B = = ’ EE &= E &=

Audit proof for
this certificate

esLer

Plenum Protocol Specific: BLS multi-signature

esLer

BLS multi-signature as part of
Consensus Protocol

O

Each Node BLS signs data during Consensus

m Ledger merkle root hash

m State merkle root hash

m Timestamp
BLS multi-signature is calculated once the Batch
is ordered
If there is no requests in the Pool, a PrePrepare
with no requests is sent to update the BLS
multi-signature

BLS
multi-signature
from BLS
signatures 2, 3, 4

Node 1

BLS
signature 3
in COMMIT

Node 3

BLS signature 2

Node 2

BLS signature 4
in COMMIT

Node 4

Example of BLS multi-sig calculation for
Node 1
The same is applied to every Replica

Cryptography Summary

e Ledgers:
o Merkle Tree (Ledger)
o Patricia Merkle Trie (State)

e Node-to-Node Communication
o ZMQ (libsodium) as secure transport
m CurveCP handshake

m Authenticated Encryption
e Authentication: Poly1305 MAC
e Symmetric key crypto: XSalsa20
e Public Key Crypto: Curve25519

m No Digital Signatures
o BLS multi-signature to sign merkle roots
e Client-to-Node communication
o Ed25519 Digital Signatures

eLerny
e

Summary

Ledger purpose-built for Identity
Indy has its own Ledger and consensus protocol implementation
Indy is in production (Sovrin network) for more than 2 years
Indy Consensus Protocol:
o RBFT consensus protocol with a plan to move to Aardvark
e Indy Ledger:
o Multiple Ledgers (each with Merkle Tree)
o States for efficient reads and validation
o Authentication, Authorization and dynamic validation is based on the information from the
Ledger
o Audit Ledger synchronizes the ledgers and introduces blocks

esernym

Summary

e Efficient Read
o Read data from one Node due to BLS multi-signatures and state proofs
e Specific of the Protocol:
o 3PC Batching
Data Consistency check as part of Consensus Protocol
Dynamic validation based on the current uncommitted state
Usage of Audit Ledger
Sequential applying of PrePrepares
BLS multi-signature as part of Consensus Protocol

o O O O O

esernym

Links

e Plenum and Node:
https://qgithub.com/hyperledger/indy-plenum/blob/master/README.md

@)

o https://qithub.com/hyperledger/indy-plenum/tree/master/docs/source
o https://qithub.com/hyperledger/indy-node/blob/master/README.md
o https://qithub.com/hyperledger/indy-node/tree/master/docs/source

e RBFT:
o https://pakupaku.me/plaublin/rbft/5000a297 .pdf

e Aardvark:

o https://lwww.usenix.org/legacy/events/nsdi09/tech/full_papers/clement/clement.pdf

e PBFT:

o https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/p398-castro-bft-tocs.p
df

esernym

https://github.com/hyperledger/indy-plenum/blob/master/README.md
https://github.com/hyperledger/indy-plenum/tree/master/docs/source
https://github.com/hyperledger/indy-node/blob/master/README.md
https://github.com/hyperledger/indy-node/tree/master/docs/source

