
Hyperledger Indy
Public Blockchain
Hyperledger Bootcamp Russia

Presented by Alexander Shcherbakov

● Indy has its own implementation of Distributed
Ledger not dependent on any other blockchain
platform

● Indy has its own implementation of a PBFT-like
consensus protocol

● Indy is one active Hyperledger projects
● Indy deployment (Sovrin) is in production for

more than 2 years

Sovrin Networks:
● Builder Net
● Staging Net
● Main Net

Agenda
1. Indy-Plenum and Indy-Node
2. Architecture Overview
3. Ledger
4. Consensus Protocol

○ RBFT
○ Moving to Aardvark
○ Plenum protocol specific

5. Summary and Key Features

Indy-Plenum and Indy-Node
● Indy-Plenum:

○ https://github.com/hyperledger/indy-plenum
○ Consensus Protocol
○ Ledger

● Indy-Node:
○ https://github.com/hyperledger/indy-node
○ Depends on indy-plenum
○ Identity-specific transactions Plenum

Indy-Node

SCHEMA
txn

CRED_DEF
txn

GET_SCHEMA
request

GET_CRED_DEF
request

Indy-Plenum and Indy-Node
● Indy is a Ledger purpose-build for Identity
● Can be used as a general-purpose Ledger

○ Extend Plenum
○ Custom transactions (pluggable request

handlers)
○ Plugins

Plenum

Plugin A

Txn C

Txn D

Txn A Txn B

Plugin B

Indy-Plenum and Indy-Node
● Written in Python
● Depends on

○ ZMQ
○ Indy-crypto (Ursa)
○ Libsodium

● Message-driven and modular architecture
○ Recent refactorings improved this

● Extensive test coverage
○ TDD
○ Unit tests
○ Integration tests
○ Property-based and simulation tests
○ System tests
○ Load tests (usually 25 Nodes)

Architecture Overview: Indy Blockchain Type

Architecture Overview: What data is on Blockchain

● No private data is written to the Blockchain
● Only Public data (such as Issuer’s Public Key) is there

Architecture Overview: Validator and Observer
Nodes

● Validator
○ Handles Writes and Reads
○ These are the nodes that
come to consensus

● Observer*
○ Handles Reads
○ Keep their “state” in sync
with the Validators

*Partially implemented

Architecture Overview: Validator Nodes

Plenum Consensus
Protocol (RBFT)

● Each Node replicates all
ledgers

● Each Ledger has a Merkle Tree
● Most of the Ledgers have State

based on Patricia Merkle Trie

ZMQ as secure transport
● TCP-based
● CurveCP, libsodium
● Authenticated encryption, no digital

signatures
○ Authentication: Poly1305 MAC
○ Symmetric key crypto: XSalsa20
○ Public Key crypto: Curve25519

N=3F+1
● N - number of nodes
● F - max number of

malicious nodes

BLS
multi-sig

Architecture Overview: Write Requests

● (Multi) Signed by the
user

● Digital Signature:
Ed25519

F+1 equal
replies

Write Request
(transaction)

Architecture Overview: Read Requests
Just 1 Reply:

● BLS multi-sig
● State (audit) proof

No signature

Read
Request

Architecture Overview: Authentication
Authentication is based on the information present
in the Ledger

● Write Requests:
○ Must be signed (Ed25519 digital signature)
○ Signature is verified against a Public Key stored on the

Ledger (DID txn)
○ Every transaction author must have a DID transaction on the

Domain Ledger

● Read Requests:
○ Anyone can read, no authentication is required

Write
Request

Architecture Overview: Authorization
Authorization is based on the information present in the
Ledger

● Write Requests:
○ There is a role associated with every DID
○ There are configurable auth rules (stored in Config Ledger) which

can define authorization policy for every action
○ The rules may define how many signatures of the given role are

required
○ The rules can be composed by OR/AND expressions

● Read Requests:
○ Anyone can read, no authorization is required

Add a new SCHEMA:

(1 TRUSTEE) OR
(2 STEWARDS)

Ledger: Transaction Log and Merkle Tree

● Ledger:
○ Ordered log of transactions
○ Merkle Tree for the whole ledger
○ No real blocks

● RocksDB as key-value storage
● MessagePack for serialization
● Ledger catch-up procedure

○ On Start-up
○ On lagging behind

Transaction
Log

Merkle
Leaves

Merkle
Nodes

Merkle
Tree

Ledger: Merkle Tree

1. Merkle Tree Root Hash
○ Ledger Catchup
○ Transaction Validation

2. Consistency Proof
○ Ledger Catchup

3. Inclusion (audit) Proof
○ Reply to written

transaction
○ GET_TXN reply

Audit Proof for
d3 transaction

Appended
transactions

Ledger: Ledger Types
Indy has multiple Ledgers (each with a separate transaction log and a merkle
tree):

● Audit Ledger
○ Order across ledgers

● Pool Ledger
○ Transaction for every Node in the pool
○ Adding, editing, removing nodes

● Config Ledger
○ Pool config parameters
○ Used in transaction validation

● Domain Ledger
○ Identity-specific transactions
○ Application-specific transactions

● Plugins can add new ledgers

Ledger: Pool Ledger
● A new Pool is built from genesis

transactions
● Nodes can be added and removed

from the Pool by sending a NODE
txn to the Pool Ledger

● Node’s data can be modified by
sending a NODE txn to the Pool
Ledger

1: add Node1
2: add Node 2
3: add Node 3
4: add Node 4

5: edit IP address for Node 1
6: add Node 5
7: add Node 6
8: remove Node 2
9: remove Node 3

Node 1 Node 4 Node 5 Node 6

Pool
Ledger

Genesis
transactions

Ledger: Audit Ledger
● Why

○ Synchronization between ledgers
■ Global sequence number between ledgers
■ Ledgers are caught up sequentially and one by one

○ Recovering of pool state after startup
○ External audit

● Audit transaction as a Block:
○ Batch seq no
○ View no
○ Corresponding ledger root hash
○ Corresponding ledger size
○ Current Primaries

1: pool txn
2: domain txn
3: pool txn
4: config txn
5: domain txn
6: domain txn
…..

Pool
ledger

Domain
ledger

Config
ledger

Audit
ledger

State
● Each Ledger (except Audit Ledger) has a

State
○ Pool State
○ Config State
○ Domain State

● Map ordered list of transactions to the
current state as dictionary

○ Dynamic Validation
○ Read requests.

● Merkle Patricia Trie (as in Ethereum)
○ Radix Tree + Merkle Tree
○ Ledger Merkle Tree for Lists (ordered txn log)
○ Patricia Merkle Trie for Dicts

● Key-value storage - RocksDB.

10: DID_A, PUB_KEY_A1
…..
24: DID_A, PUB_KEY_A2
…..
36: DID_B, PUB_KEY_B1
…..
102: DID_B, PUB_KEY_B2
…..
125: DID_A -> PUB_KEY_A3

{DID_A : PUB_KEY_A3,
 DID_B : PUB_KEY_B2}

Ledger

State

Consensus Protocol: BFT
● No generals trust any other

one general
● Each independently decides

to attack, if two others also
commit to attack

● With four generals, we can
have one faulty general, and
we can still agree

Consensus Protocol: RBFT
● Byzantine Fault Tolerance

○ Built on RBFT: Redundant Byzantine Fault Tolerance.
○ Improves over PBFT (by Miguel Castro and Barbara Liskov) by executing several protocol

instances in parallel

● Better throughput, lower latency than proof-of-work
● Performs better compared to its predecessors under dynamic load and under

attack

Consensus Protocol: RBFT Three Phase Commit

Consensus Protocol: RBFT Redundancy with Active
Monitoring

Consensus Protocol: View Change
● Protocol is leader-based
● Leader may behave maliciously

○ Disconnected/Stopped
○ Degraded performance
○ Inconsistent Data (Ledger/State)

● If the Pool realizes that a Leader needs to be changed, it starts a View
Change process

○ RBFT has multiple instance of the protocol that compare performance, and decide if master
protocol is degraded

● View Change is implemented the same way as in original PBFT paper
○ A variant without digital signatures

● Plenum has a couple of enhancements to make sure the data is consistent
during the View Change

Consensus Protocol: View Change
● All transactions that could be

potentially ordered on at least one
correct Node are eventually ordered
on all Nodes

● View Change procedure:
○ Each node propagates its prepared

certificate to other nodes (that is
transaction it could potentially ordered)

○ A new Leader decides which transactions
need to be re-ordered and do the
re-ordering

Node 1 Node 2 Node 3 Node 4

Checkpoint:
ppSeqNo=100

Prepared:
ppSeqNo=120

Checkpoint:
ppSeqNo=100

Prepared:
ppSeqNo=120

Checkpoint:
ppSeqNo=100

Prepared:
ppSeqNo=119

Checkpoint:
ppSeqNo=100

Prepared:
ppSeqNo=115

Re-order from
ppSeqNo=100
till
ppSeqNo=120

Consensus Protocol: Moving to Aardvark
● Although RBFT protocol may be quite sensitive to malicious Leaders in some

conditions, it’s slower than other PBFT-like protocols
○ N^3 vs N^2

● We are expecting to change consensus protocol to Aardvark
○ PBFT-like protocol with the same view change implementation
○ Has just 1 protocol instance (like in PBFT and unlike RBFT)
○ Does regular View Changes
○ Probability of View Change depends on the Leader’s performance

Plenum Protocol Specific
● 3PC Batching

○ Multiple transactions are ordered as one in a
batch

● Data Consistency check as part of
Consensus Protocol

○ Apply batches as proposed by the Leader to the
Ledgers and States => uncommitted merkle
root

○ Compare uncommitted merkle root hash
with the Leader’s one (in PrePrepare message)

○ This guarantees Data Consistency
○ If Leader sends inconsistent Data - View Change

happens

Txn1 Txn2 TxnN

Applied
batches

Merkle root A

PRE_PREPARE:
- Batch of
txns
- Leader’s
merkle
root: root B

Merkle root B

3PC
Batch

Plenum Protocol Specific
● Dynamic validation based on the current

uncommitted state
○ When a PrePrepare is applied, each transaction must

pass the dynamic validation
○ Dynamic validation is performed against the current

uncommitted Ledger or State

● Usage of Audit Ledger
○ Audit Ledger is used to confirm data consistency as part

of consensus
○ Audit Ledger’s root is used Checkpoint

Txn 1 Txn 2 Txn 3

3PC Batch (PrePrepare)

Txn 1 Txn 1

Txn 2

Verified against

Plenum Protocol Specific
● Sequential applying of PrePrepares

○ We may have more than one Batch (PrePrepare)
in flight, but all PrePrepares are applied
sequentially (no gaps) to check data consistency

● Message Requests
○ If a message from a Node is lost/missing, it’s

requested from this Node

PrePrepare:
ppSeqNo=10

PrePrepare:
ppSeqNo=11

PrePrepare:
ppSeqNo=13

PrePrepare:
ppSeqNo=12

Apply

Apply

Do not
Apply

- Apply
ppSeqNo=12
- Apply
ppSeqNo=13

Plenum Protocol Specific: BLS multi-signature

Sufficient to send Read requests to just one Node:

● State (Audit) Proof
○ Merkle Tree Proof that the result belongs to a State

(Ledger) Merkle Tree with the given root

● BLS multi-signature against the merkle tree
root

○ All nodes multi-sign the merkle tree root of Ledgers and
States as part of Consensus Procedure

The client verifies State (Audit) Proof and BLS
multi-sig

We trust the root as it was
signed by the nodes in the
pool

Read
Request

Plenum Protocol Specific: BLS multi-signature
● BLS multi-signature as part of

Consensus Protocol
○ Each Node BLS signs data during Consensus

■ Ledger merkle root hash
■ State merkle root hash
■ Timestamp

○ BLS multi-signature is calculated once the Batch
is ordered

○ If there is no requests in the Pool, a PrePrepare
with no requests is sent to update the BLS
multi-signature

Node 1 Node 2

Node 3 Node 4

BLS signature 2
in COMMIT

BLS signature 4
in COMMIT

BLS
signature 3
in COMMIT

BLS
multi-signature
from BLS
signatures 2, 3, 4

Example of BLS multi-sig calculation for
Node 1
The same is applied to every Replica

Cryptography Summary

● Ledgers:
○ Merkle Tree (Ledger)
○ Patricia Merkle Trie (State)

● Node-to-Node Communication
○ ZMQ (libsodium) as secure transport

■ CurveCP handshake
■ Authenticated Encryption

● Authentication: Poly1305 MAC
● Symmetric key crypto: XSalsa20
● Public Key Crypto: Curve25519

■ No Digital Signatures
○ BLS multi-signature to sign merkle roots

● Client-to-Node communication
○ Ed25519 Digital Signatures

Summary
● Ledger purpose-built for Identity
● Indy has its own Ledger and consensus protocol implementation
● Indy is in production (Sovrin network) for more than 2 years
● Indy Consensus Protocol:

○ RBFT consensus protocol with a plan to move to Aardvark
● Indy Ledger:

○ Multiple Ledgers (each with Merkle Tree)
○ States for efficient reads and validation
○ Authentication, Authorization and dynamic validation is based on the information from the

Ledger
○ Audit Ledger synchronizes the ledgers and introduces blocks

Summary
● Efficient Read

○ Read data from one Node due to BLS multi-signatures and state proofs
● Specific of the Protocol:

○ 3PC Batching
○ Data Consistency check as part of Consensus Protocol
○ Dynamic validation based on the current uncommitted state
○ Usage of Audit Ledger
○ Sequential applying of PrePrepares
○ BLS multi-signature as part of Consensus Protocol

Links
● Plenum and Node:

○ https://github.com/hyperledger/indy-plenum/blob/master/README.md
○ https://github.com/hyperledger/indy-plenum/tree/master/docs/source
○ https://github.com/hyperledger/indy-node/blob/master/README.md
○ https://github.com/hyperledger/indy-node/tree/master/docs/source

● RBFT:
○ https://pakupaku.me/plaublin/rbft/5000a297.pdf

● Aardvark:
○ https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/clement/clement.pdf

● PBFT:
○ https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/p398-castro-bft-tocs.p

df

https://github.com/hyperledger/indy-plenum/blob/master/README.md
https://github.com/hyperledger/indy-plenum/tree/master/docs/source
https://github.com/hyperledger/indy-node/blob/master/README.md
https://github.com/hyperledger/indy-node/tree/master/docs/source

