
Testing Distributed Systems
Hyperledger Bootcamp Russia

Presented by Sergey Khoroshavin

Agenda
● Why testing
● Common approaches
● Property based testing
● Useful properties
● Questions

Why testing
● Catch bugs before they inflict damage

○ Earlier = cheaper
○ Easier = cheaper

● Maintainability
○ Good tests can become documentation that never lies
○ Safety net when improving existing code

● Know limitations
○ Performance characteristics
○ Memory requirements
○ “What if …?”

Distributed systems
● Complex

○ different entities exchanging messages…
○ ...which can arrive out of order, too late, or never

● Easy to make mistakes
● Cost of mistake can be high
● Take a lot of time to develop
● Runtime conditions can vary wildly

Common Approaches

Unit testing
● Test small isolated pieces of code

○ easy to write, cheap to run
○ easy to understand what went wrong

● Help design clean code
● Can be seen as some form of documentation

○ which never lies

● Written by developers
○ probably in TDD style

Unit testing: problems
● Lots of tests needed to get decent coverage

○ so actually not so easy to write when looking at the whole picture

● Easy to miss some edge cases
○ especially in complex systems

● Can be hard to write for legacy code
○ refactoring can help
○ "Working effectively with legacy code" by Michael Feathers

● Cannot test whole system
○ other complementary approaches needed

https://www.oreilly.com/library/view/working-effectively-with/0131177052/

Unit testing: suggestions
● Test interfaces and contracts

○ try to refrain from accessing implementation details

● Name and organize tests sensibly
○ feel the difference: test_leader_election vs

test_leader_election_eventually_completes
○ remember that you’ll end up with thousands of unit tests

● Make tests straightforward to read and write
○ avoid complex logic - prefer separate test cases
○ avoid creating complex frameworks which hide API under test

● Try TDD when writing new code
○ don’t follow TDD zealots blindly
○ find your own balance

Load testing
● (Stress) test system as a whole
● Relatively easy to write

○ actually it can be hard, but usually there is just one tool(set) for running load tests
○ as opposed to thousands of unit tests

● Can show lots of insidious problems
○ memory leaks
○ performance problems at scale
○ protocol flaws

● Understand stability and performance characteristics
● Written either by developers or QAAs

Load testing: problems
● Hardware to run tests can be expensive

○ imagine running load test against pool of 25 nodes for days

● Analyzing results can be hard
○ imagine analyzing 10s to 100s Gbs of logs from above mentioned tests

● Doesn’t guarantee to show all problems
● Reproducibility can be a problem

Load testing: suggestions
● Plan in advance, follow plan

○ don’t be overwhelmed by results

● Test different scenarios
○ stable vs spiky load
○ light vs DoS-like load
○ flaky or even partitioned network

● Automate as much as possible
○ infrastructure
○ configuration management
○ running test itself
○ gathering and preliminary analysis of results
○ Ansible + some python scripts help a lot

Integration/system testing
● Test big parts of system or system as a whole

○ can find problems which are hard/impossible to find with unit tests
○ can provide great coverage with relatively low effort

● Relatively easy to write
○ even if code is not of highest quality

● Often cheaper to run than load tests
● Can be written by developers or QAAs

Integration/system testing: problems
● Actually share a lot common with unit tests

○ especially “hard to cover all edge cases”

● Slow to run
○ CI cost can become quite high

● Easy to end up with flaky tests
● Problem analysis can be hard

Integration/system testing: suggestions
● Same as unit tests +
● Avoid “wait for some time” pattern, prefer “wait until some event happens”
● Avoid writing integration tests for every edge case covered in unit tests:

○ prefer a couple of integration tests for main scenarios
○ add integration tests for scenarios that cannot be properly covered by unit tests

Recap
● No silver bullet, need tests on all levels

http://www.youtube.com/watch?v=0GypdsJulKE

Property Based Testing

Main idea
● Developer comes up with properties of system, instead of examples
● Testing framework creates hundreds of random examples and checks that

properties hold

Example: Testing key-value storage
● Common approach

storage = Storage()

storage['a'] = 42

assert len(storage) == 1

assert storage['a'] == 42

Why ‘a’? Why 42?

Example: Testing key-value storage
● Adding randomization

storage = Storage()

key = arbitrary_key()

value = arbitrary_value()

storage[key] = value

assert len(storage) == 1

assert storage[key] == value

Generated pseudorandomly,
no more “arbitrary” values

Example: Testing key-value storage
● Adding induction

storage = arbitrary_storage()

backup = storage.copy()

key = arbitrary_key()

value = arbitrary_value()

assume(key not in storage)

storage[key] = value

assert len(storage) == len(backup) + 1

assert storage[key] == value

Generated pseudorandomly,
contains arbitrary number of
elements

Good way to avoid too much logic
and separate different test cases

Example: Testing key-value storage
● Another test case

storage = arbitrary_storage(min_size=1)

backup = storage.copy()

key = choose_arbitrary(storage.keys)

value = arbitrary_value()

storage[key] = value

assert storage == backup

Chosen pseudorandomly
from existing keys

Property based testing strengths
● Relatively small number of tests can provide good coverage
● Applicable at unit, integration and system levels
● Framework can come up with unexpected edge cases

○ and find bugs before expensive load test is performed
○ ...or before these bugs slip into release

Property based testing problems
● Harder to write (especially initially)

○ need a mind shift to think about properties instead of examples

● Can be harder to read
○ thinking about examples is easier and more natural, than thinking about properties

● Can give false feeling of confidence
○ output of sort should be sorted, what can go wrong?
○ def sort(input): return [1, 2, 3]

● Specialized framework is very desirable

Why frameworks?
● Pseudorandom generators

○ randomly sample from possible input space
○ with some emphasis on edge cases
○ repeatable (seed is controllable)
○ composable (create generators for complex custom types)

● Shrinking
○ after coming up with failing example…
○ ...try to “minimize” input so that test still fails
○ very useful when analyzing failures

Popular frameworks
● Python: Hypothesis
● Rust: PropTest
● Scala: ScalaCheck
● C++: RapidCheck
● JavaScript: FastCheck
● Go: Gopter

https://github.com/HypothesisWorks/hypothesis
https://github.com/AltSysrq/proptest
https://github.com/rickynils/scalacheck
https://github.com/emil-e/rapidcheck
https://github.com/dubzzz/fast-check
https://github.com/leanovate/gopter

Stateful property based testing
● Instead of input values to functions…
● ...generate random sequences of operations
● Coming back to key-value storage example operations are “add new element”

and “add existing element”
● Failure case is trace of such operations
● Shrinking still applies to help get minimal trace!

Simulation testing
● Control all external inputs to system
● Abstract time through scheduler

○ get_current_time()
○ schedule(interval, callable)

● Use special implementation in tests
○ run_for(duration)

■ advance time and process events until “now+duration”
○ wait_for(condition)

■ advance time and process events until condition becomes true
○ production code can think it waited for hours

■ while test run took only fraction of a second

● Network can be simulated through scheduler
○ send just schedules receive call with random delays

Simulation test example
● Leader election test
● Arrange

○ schedule at random interleaved times:
○ reception of incoming requests
○ leader change events

● Act
○ run scheduler until there are either:
○ no new events (so no further progress is possible)
○ all requests processed by all nodes

● Assert
○ all nodes changed leader
○ all nodes elected same leader
○ all requests are processed by all nodes in same order

Useful properties

Fuzzing
● Check that system doesn’t crash or do unexpected things no matter what

input is given
● Can be seen as special case of property based testing
● So special that there are specialized tools for this job:

○ most notable AFL (American Fuzzy Lop)
○ coverage guided fuzzer
○ security oriented
○ has long list of found vulnerabilities

http://lcamtuf.coredump.cx/afl/

Test oracle
● Different implementations of same algorithm
● Optimized vs naive

○ quicksort vs bubble sort
○ asm/low-level vs plain

● Common functionality
○ persistent kv storage vs dictionary
○ merkle patricia trie vs dictionary

● Numeric vs analytic
○ test numeric solver against cases where analytical solutions exists
○ helps understand numeric limitations

Direct requirements
● Some random examples

○ setter-getter
○ store-fetch
○ elements of dictionary are unique
○ sort returns sorted list
○ base58 encoding contains only symbols from base58 alphabet
○ signature checker should accept genuine signature, reject random

● Also applicable to math
○ vector translation and rotation doesn’t affect its length
○ normalized vector should have unit length

Reverse
● Serialize-deserialize
● Encode-decode
● Encrypt-decrypt
● Invert-invert

○ matrix inverse or transpose

● Math transforms
○ coordinate
○ domain (for example Fourier)

Idempotence
● Repeated application is identical to single application

○ Sorting
○ canonical representation (filesystem path, JSON encoding, etc)
○ adding existing element to dictionary or set
○ vector normalization

● Trick with double reverse
○ normalize == encode-decode
○ check idempotence of normalize
○ can be useful when representation is ambiguous

Different paths, same result
● x + y = y + x

○ non-standard number representations (bigint, rational, etc)
○ cryptographic objects like elliptic curve points
○ set/dictionary union/intersection

● F(x+y) = F(x) * F(y)
○ linear operators

■ coordinate transforms
■ convolution
■ domain transforms

○ cross-domain operations
■ product of fourier transforms is fourier transform of convolution
■ set/dictionary merge vs adding elements one by one

Conclusion
● There is no silver bullet, need tests on all levels
● Treat tests as first class code

○ follow good practices
○ avoid anti-patterns

● Find right balance for your project
○ right = maximizes return of investment

● Property based testing can help a lot
○ approach useful both in unit and system tests
○ improves coverage with less effort
○ especially when applied to complex projects

Questions?

Useful resources
● Introduction to property based testing
● Choosing properties for property-based testing

https://alexwlchan.net/2016/06/hypothesis-intro/
https://fsharpforfunandprofit.com/posts/property-based-testing-2/

