
Understanding Hyperledger Fabric
Christopher Ferris, IBM CTO Open Technology

September 2019



https://hyperledger.org/

Introducing Hyperledger

https://hyperledger.org/


3.5
Years since launch

126K+ 
Commits

9 
Tools

6 
Frameworks

3 
1.0+ Production Releases

260+ 
Members

(50+ in AsiaPac)

11 
Active Community 
Working Groups &

Special Interest Groups

165+ 
Meetups

Worldwide
(66 countries)

56K+ 
Meetup

Participants

2,000+ 
Media Clips Per Month 

Hyperledger Momentum

 



The Hyperledger Greenhouse

 



Hyperledger Fabric Project News

- Maintaining a quarterly release cadence
- Hyperledger Fabric v1.4.3 released August 2019
- Hyperledger Fabric v2.0.0-alpha released for early access testing
- v1.4.x is our first long term support release

New Features: 
- v1.4.1 support for Raft consensus orderer
- v1.4.2 support for Kafka to Raft migration
- v1.4.3 patch release
- v2.0.0-alpha 

- new chaincode lifecycle support
- Alpine based images
- StateDB caching

https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/latest/


Characteristics•Permissioned
•Highly modular
•Smart contracts in general purpose languages
•Pluggable consensus
•Privacy
•No “mining” or native crypto-currency required for 
consensus

•Execute-order-validate vs order-execute

Characteristics



odular and Configurable•Permissionless
• Anyone can participate
• Everyone is anonymous
• No trust, must treat all entities as adversarial

•Permissioned
• Participation is selective
• Identity is known and often vetted
• Operate under a shared governance model
• Certain degree of trust can be established

Permissioned vs Permissionless



Highly Modular and Configurable•Pluggable ordering service establishes consensus
•Pluggable membership service provider
•Optional peer-to-peer gossip service
•Ledger can be configured to support a variety of 
DBMSs

• LevelDB, CouchDB, BerkleyDB*, SAP Hana*
•Pluggable endorsement and validation policy 
enforcement

Highly modular platform



Highly Modular and Configurable•Written in traditional programming languages
• Golang, Java, Javascript, …
• Implement a language specific shim

•Do not need to be deterministic

Smart Contracts



Highly Modular and Configurable•Most existing smart-contract capable blockchain 
platforms follow an “order-execute” architecture 
in which the consensus protocol:

• validates and orders transactions then propagates them to all 
peer nodes, 

• each peer then executes the transactions sequentially

•Contracts must be deterministic
•Sequential execution limits performance & scale

Order-execute



Highly Modular and Configurable•Separates the transaction flow into three steps: 
• executing a transaction and checking its correctness, and 

endorsing it; 
• ordering transactions through a consensus protocol; and 
• transactions validated against an application-specific 

endorsement policy and committed to the ledger

•1st step eliminates non-determinism
•Allows for parallel execution
•Allows for pluggable consensus

Execute-order-validate



Highly Modular and Configurable•Channel architecture
•Private data collections
•Zero knowledge proofs 

• Identity mixer
• ZKAT - coming soon after token capabilities added

Privacy & Confidentiality



Architecture

13

O

O O

O

Ordering Service

Client
Application

SDK 
(HFC)

Membership
Services
Provider

Peer

Endorser

Ledger

Committer

AChaincode B

!Events



Channels

14

• Similar to v0.6 PBFT model
• All peers connect to the same 

system channel (blue).
• All peers have the same chaincode 

and maintain the same ledger
• Endorsement by peers E0, E1, E2 and 

E3 

E0
A

B

E3

E2

E1

A
B

A
B A

B

OO

O O

Endorser Ledger

Committing Peer Application

Ordering Node

Smart Contract
(Chaincode)

Endorsement 
Policy

Key:

Client
Application

SD
K

P

Ordering-Service

Hyperledger Fabric



Private Data Collections
Keep chaincode data confidential among a subset of channel members.
Store private data alongside the public ledger with hashes on the public ledger serving 
verifiable proof of the data.

• Private data grouped in 
collections having access 
policies

• Private data of a collection 
stored solely to peers who 
satisfy the collection’s access 
policy

For more details see charts at https://jira.hyperledger.org/browse/FAB-1151

https://jira.hyperledger.org/browse/FAB-1151


Identity Mixer

16



Relevant in multiple use-cases
• Financial asset transfer
• Securities trading
• Virtual payments

Value: Extend automation, trusted 
record keeping without the 
need for trusted mediators

Import available 
assets

Ledger state
IBM : 2 : Bob
IBM : 3 : Lucy
ABC : 5 : Alice
EMC : 8 : Charlie

Transfer 1 IBM 
from Bob to Lucy

Transfer 2 ABC 
from Alice to Bob

IBM : 1 : Bob
IBM : 4 : Lucy
ABC : 5 : Alice
EMC : 8 : Charlie

IBM : 1 : Bob
IBM : 4 : Lucy
ABC : 3 : Alice
ABC : 2 : Bob
EMC : 8 : Charlie

Transactions Import 
available assets

IBM : 2 : Bob
IBM : 3 : Lucy
ABC : 5 : Alice
EMC : 8 : Char
IBM tot: 5
ABC tot: 5

…

Transfer 1 IBM 
from Bob to Lucy

Transfer 3K ABC 
from Alice to Bob

IBM : 2 : Bob
IBM : 3 : Lucy
ABC : 5 : Alice
EMC : 8 : Char
IBM tot: 5
ABC tot: 5

…

IBM : 2 : Bob
IBM : 3 : Lucy
ABC : 5 : Alice
EMC : 8 : Char
IBM tot: 5
ABC tot: 5

…

Authorized 
asset 

transfer

Anonymity
of asset
owners

Double-
spending 
resistance

Security

Transactional 
activity

confidentiality

Privacy

Shareholder example:

Public verifiability of ledger 

Compatibility
with 

standards

Privacy Preserving Asset Mgt



Hyperledger Burrow EVM Integration

O

O O

O

Ordering Service

Web3 proxy Go SDK 

Membership
Services
Provider

Peer

Endorser

Ledger

Committer

evmcc
!Events

Web3 client



Paving the way for a more powerful Fabric

19

Concepts we are working to pull into Fabric on an 
experimental basis
• Pushing transaction functions down into Fabric to provide a 

“proper” smart contract authoring experience
• Improving the usability of client SDKs
• Modelling of data stored on the ledger and in the world state
• Generation of domain specific RESTful APIs
• Generation of domain and programming language specific SDKs 

(JavaScript, Java, Go, etc.)
• Skeleton smart contract generation



v2.0 Roadmap (proposed)

 Enable further operational and token capabilities

•RAFT Consensus 
•Chaincode Lifecycle
•Local Collections
•Programming model additions
•Sample improvements (advanced commercial paper)
•Alpine images

https://jira.hyperledger.org/secure/Dashboard.jspa?selectPageId=10104

https://jira.hyperledger.org/secure/Dashboard.jspa?selectPageId=10104


Get Started!

21

https://wiki.hyperledger.org/projects/fabric

Contribute – become one of the nearly 300 developers working on this critical 
technology

Consume – leverage the most mature of the emerging enterprise blockchain 
platforms

https://wiki.hyperledger.org/projects/fabric


Thank you!
@christo4ferris
@cbf on rocketchat


