
Hyperledger Iroha in a nutshell:  
DLT platform & project history

Software development process 2

Agenda

• Overview of Iroha and comparison with other platforms

• Iroha architecture and security

• YAC and its properties

• Roadmap

• Conclusions and future steps

Software development processSoftware development process 3

Organizational structure

Maintainers Contributors

Support
development  
and ensure
quality

Development
Checks if the
project is
conformant to
the standards

Individuals

and companies

Individuals with
defined roles and

structure

Community is here!
and other
companies…

Software development process 4

What is Hyperledger Iroha?

Our mission:

Empowering people by providing them with
decentralized technological solutions

Our vision:

Create simple & straightforward blockchain
platform for enterprise, and blockchain
enthusiasts

Software development process 5

What problems Iroha is trying to solve?

• It tries to lower a high complexity of DLT software for platform integrators,
developers of blockchain client application and users.

• Bring back trust and scalability in private networks with a complete byzantine
fault-tolerance.

• There is a lack of C++ powered DLT frameworks — so we are one of the
pioneers.

Software development process 6

Where it all started?

Sep 26 2016
Japanese companies propose Iroha to HL,  
as «inspired by Fabric C++ project with Sumeragi consensus»

https://docs.google.com/document/d/1sN-6mv-m85NlbI3ZjwFkDT0izTcxbUaZN9LjLEe045Y/edit

3’149 C++ loc
40’262 loc

https://docs.google.com/document/d/1sN-6mv-m85NlbI3ZjwFkDT0izTcxbUaZN9LjLEe045Y/edit

Software development process 7

Where it all started?

Jun 22 2018
Iroha v1.0 beta-3 is out with:
Experimental MST, block streaming, python
and Java bindings built for Windows

Aug 2 2018
Iroha v1.0 beta-4 is out with:
Faster throughput, pluggable SQL storage, tx
status streaming, fuzzing, transaction batches

Now (Feb 12)
BFT Ordering Service
Windows support

Polkadot  
project

51’341 C++ loc (+3’826)
100’506 loc

61’260 C++ loc (+9’541)
79’306 loc
Project is active for 2 years already

Software development process 8

How Iroha is different?

Software development process 9

How Iroha is different?

Factor per platform Hyperledger Fabric  
(and IBM blockchain) Hyperledger Iroha Hyperledger Sawtooth

Regional awareness China! and the rest of the world Asia, especially Japan USA

Differentiators Extendable deployment
architecture, «channels»

Universal peer role, SQL state,
linearly scalable consensus

Transaction processors,
pluggable components

Is this a blockchain? Yes (although it stores invalid transactions) Yes Yes

API gRPC & REST gRPC gRPC

Business logic layer Smart contracts  
in Go, Java & Solidity Commands and queries Transaction families and

processors

Contributing companies IBM Soramitsu Intel

Byzantine fault-tolerance — + +?

Has been already released and
used in production + +- (used by some projects) +?

Software development process 10

How Iroha is different?

Factor per platform Corda Hyperledger Iroha Ethereum

Regional awareness UK, India, USA Asia, especially Japan The world

Differentiators Scalability Universal peer role, SQL state,
linearly scalable consensus

Turing-complete smart contacts,
same codebase for public and

private
Is this a blockchain? No Yes Yes

API JSON-RPC? gRPC JSON-RPC

Business logic layer Transactions processors in
Kotlin? Commands and queries Solidity smart contracts

Contributing companies R3 Soramitsu Ethereum foundation

Byzantine fault-tolerance — + —

Has been already released and
used in production + +- (used by some projects) +?

Software development process 11

How Iroha is different?

Factor per platform IOTA Hyperledger Iroha Waves

Regional awareness Switzerland, Germany… Asia, especially Japan Russia

Differentiators IOT-focused solution Universal peer role, SQL state,
linearly scalable consensus Built-in decentralized exchange

Is this a blockchain? No Yes Yes

API ? gRPC JSON-RPC

Business logic layer ? Commands and queries Non-turing-complete SC

Contributing companies IOTA foundation Soramitsu Waves

Byzantine fault-tolerance — + —

Has been already released and
used in production ? +- (used by some projects) +

Software development process 12

Features of Iroha

• Command-driven architecture  
- Asset management  
- Identity management

• Support of linux, macOS, Windows
environment

• Byzantine fault-tolerant ordering
service and consensus

• Role-based access control

• Client libraries, including example
apps for iOS, JS (Vue.JS), Android
(Java 8)

• Universal peer role and easy scripted
deployment with Docker and
Ansible

• Multi-signature transactions

Software development process 13

Command-driven architecture

Domain

AccountMulti assets

Role

Asset I

Asset II

Permissions
Signatories

Details

Quorum

Domains
CreateDomain

Account
CreateAccount
AddSignatory
RemoveSignatory
SetAccountQuorum
SetAccountDetail

Assets
CreateAsset
AddAssetQuantity
SubtractAssetQuantity
TransferAsset

Permissions
CreateRole
AppendRole
DetachRole
GrantPermission
RevokePermission

• Any atomic state-
changing action is a
«command», which is a
piece of transaction

• A «query» is a request
for a part of state:
GetAssetInfo,
GetAccountDetails, etc.

Software development process 14

Multi-platform support

• Iroha supports linux, Windows,
macOS software environment,
with hardware layer including x86
and ARM-powered systems for
IoT and chain supply use-cases.

Software development process 15

Byzantine fault-tolerant consensus

• Iroha has novel, fast, and highly
secure consensus algorithm,
called Yet Another Consensus,
which protects Iroha networks
from failures or adversary
participants.

Node

Node

Node

Node

Value

Software development process 16

Role-based access control

Assets

Account

admin

Role Permissions

alice

bob

admin

user

money_creator

can_append_role
can_detach_role
can_create_role
can_add_asset_qty
can_add_peer
can_add_signatory
can_create_account
can_create_asset
can_create_domain
can_remove_signatory
can_set_quorum
can_transfer
can_receive
can_subtract_asset_qty

can_read_assets
can_get_roles
can_get_my_account
can_get_all_accounts
can_get_my_signatories
can_get_all_signatories
can_get_my_acc_ast
can_get_my_acc_detail
can_get_all_acc_ast
can_get_my_acc_txs
can_get_all_acc_txs
can_get_my_acc_ast_txs
can_get_all_acc_ast_txs
can_grant_add_signatory

Domains• Iroha accounts
have rights with
respect to their
multiple roles

• Genesis block
is an initial
place where
they are defined

Software development process 17

Client libraries

• https://github.com/hyperledger/iroha-java

• https://github.com/hyperledger/iroha-python

• https://github.com/hyperledger/iroha-ios

• https://github.com/hyperledger/iroha-javascript

We also have youtube videos explaining how to use the libraries with a lot of details here:

• https://www.youtube.com/watch?v=CsMIpZXWTLo iOS

• https://www.youtube.com/watch?v=PN7WoLReDs4 Python SDK

• https://www.youtube.com/watch?v=_HZB58jqi9c Java 8

https://github.com/hyperledger/iroha-java
https://github.com/hyperledger/iroha-python
https://github.com/hyperledger/iroha-ios
https://github.com/hyperledger/iroha-javascript
https://www.youtube.com/watch?v=CsMIpZXWTLo
https://www.youtube.com/watch?v=PN7WoLReDs4
https://www.youtube.com/watch?v=_HZB58jqi9c

Software development process 18

Multisignature transactions

Software development process 19

Software development process 20

gRPC server, that accepts incoming messages
from clients:

• Transactions

• Transaction batches

• «Half-baked transactions» (with less
signatures than required)

• Queries

Responsibility: stateless validation of an
incoming message

Torii (⛩)

Software development process 21

gRPC server/client, that sends/accepts incoming
messages from other peers.

Its’ responsibility is to share the state of «half-
baked» signatures across peers via Gossip protocol
— so that any Iroha client can send a transaction
with a partial «quorum» until the «quorum» is met;
to any peer in the network.

MST (actually MstProcessor)

Software development process 22

gRPC server/client, that sends/accepts incoming
messages from other peers.

It has to relay transactions to an Ordering Service, which
collects transactions to a batch, called «proposal».

A proposal of transactions is a candidate for the next
block in blockchain.

Ordering gate requests proposal from an Ordering
Service, based on consensus round number.

OrderingGate

Software development process 23

gRPC server/client, that sends/accepts
incoming messages from other peers.

Proposal emitter and transaction
accumulator.

Performs preliminary validation of
proposals (clears out all rejected
transactions from proposals, etc.)

OrderingService

Software development process 24

Has an SQL database dependency. It uses
«WorldStateView», or current
representation of ER model based on
blockchain for the purpose of stateful
validation (reject invalid transactions
where the rights aren’t sufficient for
actions: e.g. an account might not have
enough assets for a transfer)

Simulator

Software development process 25

BlockCreator adds a block meta to a
verified proposal and then sends it to
ConsensusGate, which executes logic for
consensus in a distributed network. The
consensus algorithm is called
YetAnotherConsensus, it is byzantine
fault-tolerant.

BlockCreator and ConsensusGate

Software development process 26

After commit (affirmative decision for
block candidate), the peer should put this
block into a blockstore. If there’s a gap
(e.g. peer had only 4th block, but the
network agreed on 11th block) the
synchronizer downloads missing blocks
based on peer signatures of commit for
the block.

Synchronizer

Software development process 27

Software development process 28

Consensus definition

Classical Blockchain

Node

Node

Node

Node

Value

• Agreement on a list of values

• Trust is important
+

Note: consensus algorithms solve only write
problem, but not reads by clients of a service.

Software development process 29

Blockchain platforms and their consensuses

Trust
Untrusted Trusted

PoW PoS

• Bitcoin
• Ethereum
•Monero

• EOS
• LISK

CFT

• Paxos
•Quorum

BFT

• Stellar
• Tendermint
•Hyperledger Iroha

Public Private

Software development process 30

Enterprise needs

• supports untrusted consortium
of companies

• high throughput or low latency
of messages(transactions)

• doesn’t spend lots of resources

• has the property of finality

Benefits of BFT

Identity
sharing

Hospital Insurance company

Bank

Typical use
case

Software development process 31

Existing BFT consensuses

Tendermint

+Uses existing and well-
known 3 phase schema
described in PBFT

- O(N^2) scaling, N -
number of peers
- Stake-weighted voting

Hash graph

+O(log(N)) scaling

- The algorithm is licensed
and can’t be reused as is
- There is no open-source

reference implementation

BСhain

+High throughput
+O(N) scaling

- High latency
- Slow in malicious case

Should we make yet another consensus? Unfortunately, yes

Software development process 32

Byzantine fault tolerance description

Node Node Node Node Node
……

Node

Network contains 7f+1 nodes, where f ∈ N

5f+1 nodes follow the algorithm f nodes are malicious. They
can do everything:

• shut down
• lie
• collaborate with

other faulty nodes

Assumptions

• Every node knows others network members
• Each node has a key pair for creating digital signatures
• The network tries to make an agreement on a new block

Node

f nodes might be
inactive

Software development process 33

Initial statements

•O(N) scaling or less

•Low transaction latency

•Emphasis on validation step

• Input size does not affect agreement time

•Asynchronous environment*

*Consensus has asynchronous environment. There is no reliance on time in the network.

Software development process 34

Yet Another Consensus architecture

Peer
proposal

Validation
 Agreement

block
Peer

agreed block
OS

Peer
OS

Peer
OS

Ordering Service(OS) is a
component which is
responsible for ordering
messages.

Each peer has own OS. A
common OS is chosen for
each round.

Peer requests
proposal from OS.
Proposal contains
list of messages for
the validation.   Each peers creates own

block from valid messages
and votes for it in the
network. 

Peer switches to the
next round and fetches
new proposal. 

Peer
OS

Software development process 35

Part 1. YAC core. Hash agreement

• Hash: String
• Round: <ConsensusRound: Int,  

 RejectRound: Int>
• <Hash, Round> || Signature

YAC Core

What is an input?

Vote

What about the output?

Vote is

Agreement

Agreement is

Votes indicate commit
or reject of agreement
on a hash in the round.

• Votes: Vote[]

peer

peer

peer

Software development process 36

How does YAC core work? Order function

• Pure function: same input generates same output
• Uniform distribution of hash leads to uniform

distribution of elements in resulting list

Hash Order function

1 2 3 4 } 1 23 4

Input: {Hash, initial peer list} Output: permutation
of peer list

Order function constraints

Software development process 37

How does YAC core work? Agreement process

• Peer 4 shares its state
according to permuted peer
list. It waits for some time
until the next propagation.

Propagation Collecting Agreement

1 23 4

4

Peer 3 collects the votes from the
network and waits until the
supermajority of votes are received.

1 23 4

3

Peer 3 broadcasts the commit in the
network. Everyone verifies the commit
or reject message and applies the hash.

1
2

3
4

3

Note: all phases are performed simultaneously. The process is the same for all peers.
There is no “leader” peer which shares commit, everyone can do it.

Software development process 38

Commit & reject

Commit and reject messages are just a sets of votes(Vote[]). But what is the difference?

Commit contains supermajority
(≥ 5f+1) of votes for one hash.

Reject proves that there is no agreement on
a particular hash in current round.

1 2 3 4

Example:

H1 H2 H3

H?Peers 1, 2 and 3 have different
opinions about new value. Peer 4
doesn’t respond something yet.

Nobody cares about the
hash of peer 4, because
reject message already
exists.

• Hash: String
• Round: <ConsensusRound: Int,  

 RejectRound: Int>
• <Hash, Round> || Signature

Vote is

Vote recap

• Hash: String
• Round: <ConsensusRound: Int,  

 RejectRound: Int>
• <Hash, Round> || Signature

Software development process 39

Part 2. Round pipeline

• How can we transform block to vote?
• What we are going to do with votes?

OS

round

proposal?

Validation
 YAC
core

Outcome
Strategy

block votes agreement
outcome

Peer

? - means that
value is optional.

Software development process 40

Block to vote transition

• Hash: String

• Round: <ConsensusRound: Int,  
 RejectRound: Int>

• <Hash, Round> || Signature

Round

Vote

Peer’s key pair

BlockProposal +

= =

P_hash: String. B_hash: String

Concatenation of hashes

Same as we already have

Sign vote with private key

Software development process 41

Outcome strategy

Another task is to make
a decision on votes.

Votes
• Commit

• Reject

• Commit

• Synchronisation

• Malicious OS

• Faulty OS

• BFT violation

Outcome
Strategy

• Commit - supermajority of votes for one hash

• Reject - proves that supermajority of votes cannot be collected

Commit & reject recap

Software development process 42

➡ Commit

➡ Synchronisation

➡ Malicious OS

➡ Faulty OS

➡ BFT violation

Type Condition What to do

Block

Commit with voted hash

Commit with greater round

Reject with different
proposal hash

Commit with {None, None}
hash
Reject with same proposal
but different block hash

add(R(i, j) ⇒ R(i+1, 1)

add(⇒ R(i+k, j+l)

)

)…

—

¯_(ツ)_/¯

—

⇒ R(i, j+1)

⇒ R(i, j+1)

Storage Round transition

¯_(ツ)_/¯

Outcome strategy (cont.)

Software development process 43

Part 3. Ordering Service rotation

The last question is how to pick the Ordering service? Let’s apply the same approach
as with the hash agreement!

ith

Hash

“a1fe5c”

Get R(i, 0)

1 23 4

Block

For one block round we may
request a proposal from the
corresponding OS.

Order

Get R(i, 1)

Get R(i, 4)
Get R(i, 3)

But what about collecting the transactions?

Software development process 44

Collecting the transactions. Naive approach

Naive approach implies that we can send our transactions to the current ordering service.

Get proposal R(i, 0)
3

1

transactions for R(i, 0)
from another peers

4

2

In this scenario OS may
have some strategies:

• Faulty
• Malicious
• Starvation

How can we define the
OS which collects
enough transactions?

Software development process 45

Collecting the transactions. Naive approach

Naive approach implies that we can send our transactions to the current ordering service.

Get proposal R(i, 0)
3

1

transactions for R(i, 0)
from another peers

4

2

In this scenario OS may
have some strategies:

• Faulty
• Malicious
• Starvation

How can we define the
OS which collects
enough transactions?

Software development process 46

Rounds and blocks

Block Round 0 1 2 3

top - 2 i

top - 1 i+1

top i+2

How do rounds and blocks correlate?

We have to know the permutation for
next 3 rounds. And we want to update
the order on new round.
The solution is to compute round with
the block before the previous top block
and send transactions to three ordering
services in 3 different rounds.

- proposal round

- round for sending transactions
- round for closing proposal

Software development process 47

Overview

OS proposal?
Validation

 YAC
core

Outcome
Strategy

block

votes
agreement
outcome

Storage
committer

Make new
round

OS
request

proposal

Round 0 1 2 3

i

i+1

i+2

- proposal round

- round for sending transactions
- round for closing proposal

Agreement pipeline

Proposal generation

Software development process 48

Future work

• Transaction latency is not
minimal

Current issues:
Next research:

• BFT schema with theoretically minimal latency
• Ordering services collaboration
• Log-scaling of votes/commits propagation

Additional topics
• Parallelization of validation for BFT consensuses
• Consensus for public Iroha network

✨ Contribute to Iroha ✨

Software development process 49

Roadmap

Quarter Q1 2019 Q2 2019 Q3 2019 Q4 2019

Features

Updated consensus
algorithm (from 3f+1 to
7f+1); Improved stability

and performance;

Final release of Iroha

Prototype of custom
commands and queries

Polkadot project
integration; smart

contracts on
WebAssembly VM

Parallelized validation
for BFT consensus

Software development process 50

• https://github.com/hyperledger/iroha/

✨ Contribute to Iroha ✨

https://github.com/hyperledger/iroha/

