
Anonymous Credentials from ECDSA and Zero-Knowledge Proofs

My Name Here
My Affiliation

Your Name Here
Your Affiliation

Their Name Here
Their Affiliation

Our Name Here
Our Affiliation

August 9, 2024

Abstract

Issuing digital identity documents to citizens at large scale so far has failed despite many attempts,
mainly because citizens did not (want to) buy the hardware necessary to securely manage and use
cryptographic keys. Today, for the first time in history, many users do have mobile phones that contain
a piece of secure hardware that is able to manage such keys and their secure use part of by the operating
system. This technology is generally referred to as Passkeys. Similarly, there are hardware and software
systems available that allow one to build systems to securely issue digital credentials. While there
are many standards for cryptographic (signature) schemes for such systems, the most widely used is
ECDSA, and for Passkeys that is the only scheme that is currently supported. The use of identity and
personal information is very sensitive and requires sufficient protection, in particular in connection with
any electronic media. That is, a digital identity scheme must allow users to have different identities
with different parties and be able to selectively reveal attributes from a credential obtained. The goal
of this document is to describe an identity system that provides privacy and can be implemented with
the existing hardware and operating systems and the algorithms that (secure) hardware supports. I.e.,
it can be realized solely in the application space and can be rolled out without requiring any change in
hardware, firmware, or operating systems. In particular, the document describes a digital identity and
credential scheme that makes the following guarantees:

• a user’s identity is bound to a passkey device that supports (only) ECDSA, and secret key material
never leaves the hardware,

• an identity provider can issue credentials to a user’s identity, the credentials containing a number
of attributes (for ECDSA),

• users can present a credential to a relying party while revealing only a selection of its attributes (and
where the presentation transcript can not be linked to the original credential issuance transaction
unless a unique attribute was revealed). This presentation is realized with zero-knowledge proofs.

For simplicity of the exposition and to initiate an iterative discussion, this document does not (yet)
describe 1) how to present predicates over attributes, 2) describes only the very simple case of one issuer
(and not a system where there are several issuers and users are not fully identified to all of them, and
3) does not consider revocation. These functionalities can be added at a small increase in complexity.
The scheme is described at a high-level only, in particular, 1) a number of cryptographic implementation
details are left out and 2) no security proofs are given. Both can (quickly) be done if discussions become
more concrete.

TODO: update overall text once we’ve updated the rest of the document to have the things the original
text said we didn’t have :) lol

1 Introduction

The purpose of this document is to outline a basic construction that 1) is implementable in short time and
2) addresses the main requirements as we understand them (foremost hardware binding, efficiency, practical
deployability, and privacy). It does not yet offer all features that one would expect such as revocation and

1



supporting multiple issuers where the user is not fully identified to the issuers(rene: Do we mean issuer
hiding with this sub-sentence?). While these features can be added, we prefer to follow an iterative approach
towards the final specification. Solutions adding these additional features are well-researched and can be
added to the draft at a later point. Thus the document serves as a way forward to 1) agree on the core
requirements, 2) what specification(s) of the scheme is needed in 3) what time frame, and 4) forming a team
to work on this specification.

With digital credentials (anonymous or not), the issue of preventing a user from sharing their credential
is inherently difficult due to digital data being easy to copy. While we can mitigate this through various
strategies (such as adding some biometric aspect, requiring for presenting multiple credentials belonging to
a single person, or disincentivizing sharing through risk or policies), we give a method of adding a physical
aspect that requires transferring the physical component to share the credential. Specifically, we require
credential presentation to require interaction with trusted hardware on the user’s phone, and therefore
require a user to share their phone in order to allow others to use their credentials.

Construction Outline. Working with the constraint that secure elements on phones must be used as-is
(i.e., the passkey technology supporting ECDSA signatures), we give a straightforward way of integrating
the secure element with any credential.

The general idea is as follows. Let PKD be the public key of a secure element of a user’s phone. When
the user is issued a credential from the Identity Provider (henceforth also called issuer), the user’s device’s
public key PKD is included as an attribute in its credential. The credential is then signed by the issuer with
PK I being the public key of the issuer.

Now, when a user wishes to present his credential to the Relying Party, he will prove that he is in
possession of the credential as well as the secure element containing the secret key SKD corresponding
to the public key PKD in his credential. This can be done by having the Relying Party send a unique
(unpredictable) string ctxt and the user returning a signature on that value. The signature is produced
by his phone’s secure element, and is verifiable under PKD. The string ctxt should bind the presentation
to the context where the credential is presented and it must be ensured that it has not been used before.
To create the presentation without requiring the user to reveal PKD to the Relying Party, the user uses
generic zero-knowledge techniques to prove they are 1) in possession of a signature on ctxt that verifies under
an undisclosed attribute of their credential (namely the key PKD), 2) in possession of a signature on that
credential that verifies under the issuer’s public key PK I , and 3) if an additional attribute is revealed, that
attribute is also contained in the credential.

Though there exist specific signature schemes that were designed with discrete logarithm proof systems
(such as BBS+ [BBS04, CL04] or CL [CL01, CL04] signatures), those are not compatible with deployed
hardware (and in particular Passkeys). Fortunately, advances in modern generic zero-knowledge proof sys-
tems have made generic approaches efficient enough to be competitive with such specialized protocols for
use in practice. Most importantly, they are compatible with deployed hardware and thus can be rolled out
immediately.

Having said this, we still need to consider how the attributes are encoded into the message signed by the
issuer to achieve a very practical system. Let us explain. A cryptographic signature scheme (and ECDSA
in particular) takes as input a message in the format of a binary string, hashes it to obtain a binary string
which is interpreted as an algebraic value that is then used in the signing and verification algorithms. The
system sketched above needs to make some statements about attributes (i.e., the user’s key PKD and the
revealed attributes) and hence needs to consider the encoding of the attributes into the binary string that
is hashed and signed. In practice such a mapping from structured data (such as a credential) is done using
encoding scheme such as JSON. While such encoding have advantages in terms of developer friendliness,
they will make the zero-knowledge proofs slow and may lead to interoperability issues. It is thus important
that in the construction, a more low level encoding is used. That does not mean that at a higher level API
encodings such as JSON cannot be used, it just means that we need to specify a low level API encoding for
the credential format that is less “bloated.”

We note that while the described scheme is tailored towards ECDSA, the reason being that it is the

2



scheme that is prevalent in the hardware in the population, the approach itself is “crypto-agile”: it can be
instantiated with other cryptographic schemes including ones that are post-quantum secure. In fact, the
approach presented here seems to be the best one for a post-quantum credential system. In that sense, the
scheme proposed is “post-quantum ready.”

Document Organization. We review basic preliminaries in Section 2 before going into the construction
in Section 3. In Section 4 we prove security of our general protocols given in Section 3. In Section 5 we give
specifications for how to instantiate our overall scheme. Finally, in Section 6, we give how to expand our
protocol to support desired properties such as revocation and multi-issuer credentials.

2 Preliminaries

2.1 ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analog of the Digital Signature
Algorithm (DSA) and is standardized by NIST [oST23]. We let G denote the elliptic curve group, q the
order of the group, and G a generator of the group. ECDSA additionally makes use of a hash function H,
which we instantiate with SHA-256.
A public and private key pair for ECDSA is generated as:

1. Uniformly choose a secret key sk← Z∗
q .

2. Calculate the public key as pk = sk ·G.

3. Output (pk, sk).

To sign a message m under a secret key sk, the signer does:

1. Uniformly choose an instance key r ← Z∗
q .

2. Calculate R = r ·G and let rx be the x-coordinate of R, modulo q.

3. Calculate

s =
H(m) + sk · rx

r

4. Output the signature as (s, rx).

To verify a signature (s, rx) on a message m under a public key pk, the verifier does as follows:

1. Calculate

R′ =
H(m) ·G+ rx · pk

s
and let rx

′ be the x-coordinate of R′, modulo q.

2. Output 1 if and only if rx
′ = rx. Output 0 otherwise.

2.2 Zero-Knowledge Proofs

(ey: recall ZKPs in general before going into the specific flavor of ZKP we’re going to use)

Definition 1. (ey: recall a zkp)

Interactive Oracle Proofs (IOP) are a type of zero-knowledge proof (ZKP) system that aims to provide
efficient and scalable proofs with strong security guarantees. IOPs enable a verifier to be convinced after
having only queried the proof at random locations rather than reading the entire proof and require interaction
between a prover and a verifier. Much work has been done in this space minimizing the computational and
communication overhead typically associated with zero-knowledge proofs, making it well-suited for practical
applications, especially in environments such as credentials.

3



2.2.1 Choice of Zero-Knowledge Proof System for Our Application.

For the ZKP in our application, we also make use of a polynomial commitment scheme to commit to the
witness1 for the proof. A polynomial commitment scheme allows a prover to commit to a polynomial and later
prove that the evaluation of this polynomial f on a specific point is correct, i.e. f(x) = v for public values v
and x. In our context, the function is defined by the witness for our zero-knowledge proof. Evaluating f in
certain points (leading to predictable outcomes) corresponds to the verification of the ECDSA signature by
the issuer and the one generated by the user’s device as specified above. Ligero [AHIV17] is a zero-knowledge
argument of knowledge protocol based on the MPC-in-the-head method of zero knowledge proofs and only
relies on collision-resistant hash-functions. We suggest the use of the Ligero as polynomial commitment
scheme. This is because Ligero offers proof sizes that are smaller than the witness (and the verified function).
Ligero is a well-studied, mature cryptographic protocol that has been implemented multiple times before.

TODO: Combine text from here to above text
One can use an arithmetic circuit based proof system to implement the zero-knowledge proof system

used in the credential presentation. One modern, generic recipe is to choose a IOP system and a compatible
polynomial commitment scheme. While there are many possible choices, one specific choice is to use a
sumcheck-based protocol for the IOP, and a hash-based polynomial commitment scheme. Sumcheck, for
example, when used in a circuit-based protocol, has a linear-time prover, and a careful implementation
can achieve a very small constant overhead. In particular, the sumcheck prover does not use a fast fourier
transform (FFT) internally like many other proof systems. This approach is taken by a recent unpublished
work by one of the authors. Their Hyrax implementation uses a discrete-log based commitment scheme
and a bulletproof to prove the opening. For certain small proofs, this solution is performant. The Ligero
polynomial commitment has a proof size that grows asymptotically as square-root of the witness size, but has
a larger implementation constant. However, Ligero only requires hashing (and no other operations such as
using elliptic curves), and the circuit used when creating a presentation exceeds the cross-over point (where
Ligero becomes more performant than the first approach mentioned)—therefore, they chose to use it instead.

A paper describing the full system is planned to be submitted to a conference, but this work was done
under a company arrangement, and thus must be internally reviewed first.

3 Construction

In this section we give the basic construction for an issuer, a user, and a relying party. It has two phases: 1)
the issuer issues a credential to a user and 2) the user presents the credential to a relying party. The second
phase can be repeated many times to different relying parties.

We first describe the basic setting and notations of our protocols. Then, we expand on the construction
outlined in Section 1, which requires a user to be in possession of their phone when presenting a credential
by incorporating the secure element of a user’s phone into the credential presentation procedure.

TODO: Write the following sections out in a way that allows actually writing the proof lol

3.1 Credential Issuance

For an Identity Provider to issue a credential to a user, the two first establish a session. The user uses the
public key of its secure element PKD to authenticate the session. During this session, the user and Identity
Provider perform any steps necessary to establish if a credential should be issued and what attributes should
be included in the credential. Additional means might be required to establish that PKD is indeed the
public key of the specific user’s device, such as being personal present at an office and using the device in the
presence of supervising personnel. In Figure 1 we represent this process by “establish session” and “establish
attributes” and give the the rest of the outline of the credential issuance protocol.

1Recall that “witness” in the context of a zero-knowledge proof of knowledge refers to the (typically secret) information that
the prover knows and can use to convince the verifier that a statement is in the language. If the statement is that there exists
a signature on a message m that verifies under a public key pk, the witness could be the signature.

4



Identity Provider User

Public: PK I PKD

Private: SK I SKD

PKD

establish session

establish attributes

c = signI(SK I , (PKD, csp, a1, . . . , an))
c

Figure 1: Credential Issuance.

Once the parties have determined which attributes should be included in the credential, the Identity
Provider will then issue a credential of type csp with these attributes a1, . . . , an to user that is bound to
the user’s device key PKD by computing the signature on these values and then sending this signature to
the user’s device. Specifically, the credential is computed as c = signI(SK I , (PKD, csp, a1, . . . , an)), where
signI is the signature scheme of the Identity Provider (e.g., ECDSA), SK I is the Identity Provider’s signing
key, and the message signed is the concatenation of the user’s device’s public key PKD with the credential
specification and attributes. Note that a valid credential’s specification csp will be required to define the
number of attributes in the credential and each attribute’s length.

3.2 Credential Presentation

For a user to present a credential to a Relying Party, the two must first establish a session, e.g., using
the WebAuthn standard. We note that the user is able and is very likely to be pseudonymous during this
interaction, as WebAuthn generates a fresh public key for every url/origin. However, the protocol presented
here can also be used in sessions that are established differently. Regardless of how a session is established,
the credential presentation should be bound to this session. To this end, we require the user and Relying
Party to jointly define a session context ctxt that is unique to the interaction. This context can for instance
be defined as the transcript of the key exchange protocol used to setup the end-to-end encryption between
the user and the Relying Party, or as the session key that was established, as long as it is ensured that ctxt
is a unique value with very high probability. Once the session and context ctxt have been established, the
user produces a signature on ctxt using its device’s secure element’s public key as s = signD(SKD, ctxt),
where signD is the signature scheme of the secure element. The user then proceeds to produce a proof of its
credential as follows.

At a high level, the user will be proving to the Relying Party that it knows values c, a1, . . . , an,PKD,
and s corresponding to the statement “Given the Issuer’s public key PK I , a credential specification csp,
and a context ctxt , there exists a credential c with attributes a1, . . . , an, public key PKD, and signature s
such that (1) c is a valid signature on PKD, csp, a1, . . . , an that verifies under PK I and (2) s is a signature
on ctxt that verifies under PKD”. The user begins by producing a polynomial commitment com to the
function f(PK I , csp, ctxt) = ver I(PK I , (PKD, csp, a1, . . . , an), c)∧ verD(PKD, ctxt , s) where ver I , verD are
the verification algorithms for signatures produced by the Identity Provider and device’s secret element,
respectively, and secret values PKD, c, a1, . . . , an, and ctxt define f . Note this function is a rewriting of
the statement the user is trying to prove. The user then sends this commitment com, the public key of the
Identity Provider PK I , and its credential specification csp to the Relying Party. Finally, the two parties
execute an IOP, with the user acting as the prover and the Relying Party as the verifier, for the statement

5



Relying Party User

Public: PK I , csp

Private: PKD,SKD, c, a1, . . . , an

establish session

establish ctxt

s = signD(SKD, ctxt)

com = com(PKD, a1, . . . , an, c, s)

PK I , csp, com

Interactive Proof that the opening of com

and values ctxt , csp,PK I are such that

1 = verI(PK I , ((PKD, csp, a1, . . . , an), c))

∧ 1 = verD(PKD, (ctxt , s)

...

If proof verifies, proceed.

Otherwise, abort.

Figure 2: Credential Presentation.

f(PK I , csp, ctxt) = 1, where the function f is unknown to the verifier but is the value committed to in com.
At the conclusion of the interaction, if the Relying Party accepts the proof, then the Relying Party can be
convinced the user holds both a valid credential and a signature on the unique ctxt established earlier in the
session. Otherwise, if the proof fails, then the Relying Party can conclude that either the user does not hold
a valid credential or the user is not in possession of the device which is associated the credential it attempted
to present.

4 Proof

TODO: definition and proof of security for the generic construction - @eysa

Theorem 2. The protocol given in Figure 1 is a secure abc assuming xyz.

Theorem 3. The protocol given in Figure 2 is a secure abc assuming xyz.

5 Concrete Instantiation and Specifications

TODO: specification of how attributes map to strings that are then be encoded in the bitstring message that
will signed

6



5.1 Public Parameters

Our constructions make use of ECDSA, which we briefly reviewed in Section 2. ECDSA requires specifying
an elliptic curve group G of order q and a generator G for G. It additionally requires a hash function H
(e.g., SHA-256), which maps to bit strings of length q. For the zero-knowledge proofs, there are additional
parameters that will be added in the next version.

5.2 Credential Format

As mentioned, the construction requires an efficient mapping from credential format to the binary string
that is input to the signature scheme’s sign algorithm. As there will be many different credential formats,
it is not possible to name a format that will fit all of them. We assume there is a public registry (standard)
that defines mappings from a credentials’ attributes to binary strings (and their length). There will be
further work needed here. For now we assume that the first bits of the message encode PKD, the next part
a credential specifier csp (that defines how many attributes will follow and how much space they take and
how they are encoded), and then followed by n attributes a1, . . . , an. The attributes will typically include
an expiration date, a serial number of the purpose of revocation, and information about user.

5.3 User’s Device

A user’s device contains a secure component that is able to issue signatures under a public key where only
the device’s secure element knows the corresponding signing key for. ECDSA has widespread support among
secure elements, and we give our constructions assuming the secure element issues ECDSA signatures. We
denote the ECDSA public key associated with the user’s device’s secure element as PKD.

5.4 Identity Provider

Our construction considers the Identity Provider to be issuing ECDSA signatures for the credentials, but
the techniques can applied to other types of signatures. We specify ECDSA signatures for efficiency reasons
during the credential presentation phase since the user’s device is also assumed to use ECDSA. We denote
the ECDSA public key of the Identity Provider as PK I .

5.5 Relying Party

We note that for our suggested instantiations , we do not require the Relying Party to have performed extra
setup prior to the credential presentation. If a different zero-knowledge protocol than the one in Section 2.2.1
is used, this may require the Relying Party to perform a one-time setup prior to any credential presentations.

5.6 Zero-Knowledge Proof

TODO: specification of the ZK proof - @abhi @Muthu @Carmit (ey: this means to give the circuit)

6 Extensions

In this section, we specify how to modify the basic protocols given in Section 3 to achieve additional desired
properties.

6.1 Revocation

TODO: definition of revocation scheme (probably signing a hash-tree of valid serial number ranges, tbc)
TODO: Rene: I can try for a first draft for this subsection if nobody else wants to make a start

7



For instance, one might require that is it possible to revoke credentials. There are many approaches
to this including short-lived credentials and regularly publishing signatures on all ranges of all valid serial
numbers or a hash-tree of them. At first sight, the latter seems to be the best approach for our setting.

6.2 Multi-issuer Credential Issuance

TODO: definition of multi-issuer version (include salted unique identifier in each credentials, tbd)
We all have several credentials in our wallet. While these typically all include our full names as attributes,

in an online setting, we have many more credentials which hardly ever contain our name but user some email
address. Thus it might be important that it is possible to issue credentials to users that are pseudonym and
then use different credentials together.

6.3 Proving Predicates

Next, one might require predicates over attributes such as proving that one is older than 18 given a certified
birth date. With proper encoding of attributes, proving that such predicates are true will be easy due to the
use of generic zero-knowledge proofs. Similarly, it is also possible to enable selective disclosure, i.e. revealing
a subset of credential attributes in the clear during the credential presentation phase, by modifying the
zero-knowledge statement proved.

Acknowledgements

(ey: heads up I’m doing a generic ack for the original document authors because I’m not clear who all wants
to be listed as an author) We thank the authors of [BBC+24] for their contributions to this document, in
particular (ey: if anyone wants a special shoutout (but not an authorship)).

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. pages 2087–2104, 2017. doi:10.1145/
3133956.3134104.

[BBC+24] Carsten Baum, Olivier Blazy, Jan Camenisch, Jaap-Henk Hoepman, Eysa Lee, Anja Lehmann,
Anna Lysyanskaya, René Mayrhofer, Hart Montgomery, Ngoc Khanh Nguyen, Bart Praneel,
abhi shelat, Daniel Slamanig, Stefano Tessaro, Søren Eller Thomsen, and Carmela Troncoso.
Cryptographers’ feedback on the eu digital identity’s ARF, 2024. URL: https://github.com/
user-attachments/files/15904122/cryptographers-feedback.pdf.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. pages 41–55, 2004.
doi:10.1007/978-3-540-28628-8_3.

[CL01] Jan Camenisch and Anna Lysyanskaya. An identity escrow scheme with appointed verifiers. pages
388–407, 2001. doi:10.1007/3-540-44647-8_23.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. pages 56–72, 2004. doi:10.1007/978-3-540-28628-8_4.

[oST23] National Institute of Standards and Technology. Digital signature standard (dss). Technical re-
port, U.S. Department of Commerce, Washington, D.C., 2023. doi:10.6028/NIST.FIPS.186-5.

8

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/3-540-44647-8_23
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.6028/NIST.FIPS.186-5

	Introduction
	Preliminaries
	ECDSA
	Zero-Knowledge Proofs
	Choice of Zero-Knowledge Proof System for Our Application.


	Construction
	Credential Issuance
	Credential Presentation

	Proof
	Concrete Instantiation and Specifications
	Public Parameters
	Credential Format
	User's Device
	Identity Provider
	Relying Party
	Zero-Knowledge Proof

	Extensions
	Revocation
	Multi-issuer Credential Issuance
	Proving Predicates


