
Sawtooth v1.0
Dan Middleton
Hyperledger Sawtooth Maintainer

February 2018

Licensed under Creative Commons Attribution 4.0 International License

https://creativecommons.org/licenses/by/4.0/

Agenda

2

Sawtooth Design Motivations

Sawtooth 1.0 Features

Distributed App Development

• Code: https://github.com/hyperledger/sawtooth-core

• Demos: https://sawtooth.hyperledger.org/examples/

• Docs: https://sawtooth.hyperledger.org/docs/

https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://sawtooth.hyperledger.org/examples/
https://sawtooth.hyperledger.org/docs/

Announcing Hyperledger Sawtooth 1.0 !!!

3

Hyperledger Sawtooth is an open source distributed ledger framework and one of the nine business blockchain and distributed ledger

technologies hosted by The Linux Foundation. Hyperledger Sawtooth delivers unique capabilities. A few examples are included below:

• On-chain governance – Utilize smart contracts to vote on blockchain configuration settings such as the allowed participants and smart

contracts.

• Advanced transaction execution engine – Process transactions in parallel to accelerate block creation and validation.

• Support for Ethereum – Run solidity smart contracts and integrate with Ethereum tooling.

• Dynamic consensus – Upgrade or swap the blockchain consensus protocol on the fly as your network grows, enabling the integration of more

scalable algorithms as they are available.

• Broad language support – Program smart contracts in your preferred language, with support including Go, JavaScript, Python and more.

The efforts around Hyperledger Sawtooth have grown significantly; from the initial code contribution in April 2016, to Active status graduation in

May 2017, to today’s version 1.0 availability. Hyperledger Sawtooth is supported by an active community: organizations including Amazon Web

Services, Active Ticketing, Bitwise.io, Cloudsoft, Context Labs, Dot BC Media, Ericsson, Hacera, Huawei, IBM, Intel, Microsoft Azure,

Monax, Open Music Initiative, PokitDok, R3, T-Mobile, Wind River and more than 50 engineers have contributed to the project.

Additionally, Proof of Concepts (PoC’s) have been deployed to support multiple business cases including music and media content rights

attribution, recording healthcare transactions, Know Your Customer (KYC) in financial services and others.

Hyperledger Sawtooth Open Source Community

https://www.hyperledger.org/blog/2017/05/22/hyperledger-sawtooth-graduates-to-active-status
https://www.hyperledger.org/blog/2017/05/22/hyperledger-sawtooth-graduates-to-active-status

Blockchain = Distributed Ledger

4

Distributed
Ledger

n

n-1

n-2

Each node is an instance of a database (ledger)

managed by all participants.

Within each database, blocks of transactions are

cryptographically chained in order.

Why Blockchain

5

Mutually distrusting organizations that

update the same database.

Immutable transaction history

High availability

• Crash fault tolerant

• Byzantine fault tolerant

• Liveness

n

n-1

n-2

Why Not Blockchain

6

Active Research Areas:

• Throughput

• “Private” Transactions

Wrong Usage Model:

• Internal-only Business Process

n

n-1

n-2

When people talk about blockchain security, they mostly mean availability

and integrity guarantees. Confidentiality is open research.

Bad Enterprise Blockchain Shortcuts

7

• Centralized Architectures

• No Ledger State (database fields)

?

?

?

A centralized architecture removes the main value of a distributed ledger.

Committing only transaction receipts turns the database into a log of opaque events.

Sawtooth Design Philosophy

8

Keep Distributed Ledgers Distributed

Make Smart Contracts Safe

Design for Scale

Ease-of-use for

Development & Deployment

Hyperledger Sawtooth 1.0

Architecture & Features

9

1.0 Released January 2018

v1.0 Highlighted New Features

10

Advanced Transaction Execution

• Parallel Execution

• Multi-Language Support

• Build apps in your language of

choice

On-chain Governance

• Dynamic Consensus

• Proof of Elapsed Time (PoET)

• New Permissioning Features

Distributed Applications

• Seth

• Sawtooth + Ethereum

• Run solidity on Sawtooth

• Supply Chain

• Provenance of goods

• Telemetry / tracking

Validator

Process

Validator

Process
Clients

Sawtooth Hosts

Basic Concept

11

Transaction

Processors

State

Submits transactions;

Queries the database

Mediates access to the

database

Business logic;

Validates transactions

Sawtooth Host

Validator Process

A Couple More Pieces

12

REST

Service
Transaction

Processor(s) Transaction

Processor(s) Transaction

Processor(s)

Clients

Other

Validators

State

Sawtooth Host

Validator

High-level Sawtooth Architecture

13

Block

Management

Consensus

Transaction

Handling

State

Interconnect
REST

Service
Transaction

Processor(s) Transaction

Processor(s) Transaction

Processor(s)

P2P Network

Clients

Other

Validators

Clients
Clients

Sawtooth Host

Validator

v1.0 Features: Parallel Execution

14

Block

Management

Consensus

Transaction

Handling

State

Interconnect
REST

Service
Transaction

Processor(s) Transaction

Processor(s) Transaction

Processor(s)

P2P Network

Clients

Other

Validators

Multiple

transactions per

block can effect

the same state

Parallel

scheduling
Multi-process

“smart contracts”

Clients
Clients

Sawtooth Host

Validator

v1.0 Features: Multi-Language Support

15

Block

Management

Consensus

Transaction

Handling

State

Interconnect
REST

Service
Transaction

Processor(s) Transaction

Processor(s) Transaction

Processor(s)

P2P Network

Clients

Other

Validators

Choose from:

Python,

 JavaScript,

Go,

Rust*

Choose from:

Go, JavaScript,

Python,

C++*, Java*,

Rust*

*No all features are available in these languages in v1.0.1

Seth

client

Sawtooth Host

Validator

v1.0 Features: Seth

16

State

REST

Service

Identity

Seth

Transaction

Processor

Seth

RPC PoET

Settings

Remix

Truffle

BlockInfo

Ethereum

Contract

Interpreter

v1.0 Features: On-chain Governance

Control the blockchain on the

blockchain

Settings Transaction Family enables

participants to agree on network policies

For example, vote on changing

consensus parameters using registered

public keys of consortia members.

Settings are extensible – they can be

added after genesis.

Setting (Examples) Value

sawtooth.poet.target_wait_time 5

sawtooth.validator.max_transactions_per_block 100000

sawtooth.validator.transaction_families [{
 "family": "intkey",
 "version": "1.0"
},
{
 "family": "xo",
 "version": "1.0"
}]

client

Sawtooth Host

Validator

v1.0 Features: Dynamic Consensus

18

Consensus=

DevMode

REST

Service

Settings

DevMode

Permissioning

PoET PoET-SGX

Other Smart

Contracts

Abstract

Consensus

Raft*

Set

Consensus := PoET

PBFT*

*Future consensus options

Hyperledger Sawtooth 1.0

App Development

19

1.0 Released January 2018

Validator

Process
Client

Application Development

20

Transaction

Processor

State

Transaction Family

Transaction Creation Data Model Business Logic

Validator

Process
Client

Transaction Processor ≈ Smart Contracts

21

Transaction

Processor

State

Transaction Family Transaction Families encapsulate business
logic on Sawtooth.

A Transaction Family can be as simple as a
single transaction format, with associated validity
and state update logic…

…or as complex as a VM with opcode accounting
and bytecode stored in state -- ‘smart contracts’.

The choice is up to the developer.

Sawtooth allows these concepts to coexist in the
same instance of the blockchain -- same blocks,
same global state.

Transaction Families: The Transaction Processor

All validators in the network run

every authorized transaction

processor.

On receipt of a transaction the

validator will call the TP’s Apply()

method.

Business logic simply goes in

Apply() and gets and sets state as

needed.

Transaction

Processor

Validator

Register()

Get/Set(value)

Apply(transaction)

Basic API

Transaction Families: The Client

Clients can be browser apps, CLIs, etc.

Main job is to package and sign transactions & batches

Clients can post batches through the Rest API or connect to

the validator directly

Transactions, Batches, and Blocks

Transactions are wrapped in batches which provide an
atomic unit of commit for multiple transactions (which
can span transaction families).

Transactions declare input and output addresses
(including wildcards) to allow for state access isolation
calculations (topological sort on DAG) in the scheduler.

These inputs and outputs are enforced by the Context
Manager on the context established for the transaction.

This allows parallel validation and state delta
aggregation across a potentially large number of
transactions (and across blocks).

https://www.draw.io/?page=6#G0B7tFTaSyIJacSmc2ODJVRmYwQWs

Transaction Families: The Data Model

Both Client and Transaction Processor must use the same…

• Data model

• Serialization / encoding

• Addressing scheme

Novas versões

Sawtooth 1.1 (Bumper): https://sawtooth.hyperledger.org/release/bumper/

Sawtooth 1.2: PBFT

26

https://sawtooth.hyperledger.org/release/bumper/

Example Applications & Code

Supply Chain: https://github.com/hyperledger/sawtooth-supply-chain

Marketplace: https://github.com/hyperledger/sawtooth-marketplace

RBAC: https://github.com/hyperledger/sawtooth-hyper-directory

Dev Guide: https://sawtooth.hyperledger.org/docs/core/releases/1.0.1/app_developers_guide.html

https://github.com/hyperledger/sawtooth-supply-chain
https://github.com/hyperledger/sawtooth-supply-chain
https://github.com/hyperledger/sawtooth-supply-chain
https://github.com/hyperledger/sawtooth-supply-chain
https://github.com/hyperledger/sawtooth-supply-chain
https://github.com/hyperledger/sawtooth-marketplace
https://github.com/hyperledger/sawtooth-marketplace
https://github.com/hyperledger/sawtooth-marketplace
https://github.com/hyperledger/sawtooth-hyper-directory
https://github.com/hyperledger/sawtooth-hyper-directory
https://github.com/hyperledger/sawtooth-hyper-directory
https://github.com/hyperledger/sawtooth-hyper-directory
https://github.com/hyperledger/sawtooth-hyper-directory
https://sawtooth.hyperledger.org/docs/core/releases/1.0.1/app_developers_guide.html

Check it out

Give Sawtooth a try
• Work through the tutorials
• Build your own transaction family to explore use cases

Become a contributor
• Join the community
• Help with docs, code, examples
• Become an expert and help others on chat

Links
• Code: https://github.com/hyperledger/sawtooth-core
• Docs: https://sawtooth.hyperledger.org/docs/
• Chat: https://chat.hyperledger.org/channel/sawtooth

Thanks!

29

Licensed under Creative Commons Attribution 4.0

International License

https://creativecommons.org/licenses/by/4.0/

