

Customer Confidential Security Document 1

Penetration Testing Technical Report

Prepared for: The Linux Foundation
System: Hyperledger Indy

Type: Security Assessment

Author: Graham Shaw
Date: 13 November 2018

Version: 1.0

Customer Confidential Security Document

2

1 Report Contents

1 Report Contents __ 2

2 Distribution List ___ 3

3 Revision History ___ 4

4 Engagement Particulars __ 5

5 Findings ___ 7

1. Security Assessment ___ 7

6 Analysis: Security Assessment ___ 9

6.1 Medium: Use of random.choice to generate cryptographic seed____________ 9

6.2 Medium: Sensitive data not consistently zeroed after use ________________11

6.3 Low: Cryptographic operations do not execute in constant time ___________14

6.4 Low: Class DirectoryStore potentially vulnerable to path traversal attack ____16

6.5 Low: Functions count_bits_set and highest_bit_set can enter infinite loop __18

6.6 Low: Race condition in _create_file_with_mode _______________________20

6.7 Low: Compound field name handling by CompactSerializer _______________22

6.8 Low: Function randomString does not return fully random result __________24

6.9 Informational: plenum.client.Wallet is serialised using jsonpickle __________25

7 Appendix ___27

A. Severity Rating Matrix ___27

B. Penetration Testing Methodology ___________________________________30

Customer Confidential Security Document

3

2 Distribution List

Nettitude Name Title

Graham Shaw Security Consultant

Jose Lopes Security Consultant

Miles Corn Account Manager

David Huseby Security Maven

The Linux Foundation Name Title

Customer Confidential Security Document

4

3 Revision History

Version Issue Date Issued by Comments

0.1 04 November 2018 Graham Shaw Initial Draft

0.2 08 November 2018 Jose Lopes Quality Assurance

0.3 09 November 2018 Miles Corn Quality Assurance

1.0 13 November 2018 Graham Shaw Final

Customer Confidential Security Document

5

4 Engagement Particulars

Background
This report serves as technical documentation for the recent penetration test

performed for The Linux Foundation by Nettitude. For a high-level assessment of the

tested environment, please refer to the associated management report:

MGMT_REPORT_Penetration_Test_The_Linux_Foundation_2018-10-31_v1.0.pdf

Rules of Engagement
The assessment was performed in line with the following rules of engagement:

 Nettitude’s product assessment methodology was used.

 Testing of infrastructure owned by The Linux Foundation was not permitted.

 The testing and reporting was permitted and performed during a 43 day

period; 19-Sep-18 to 31-Oct-18. Any results held in this report relate to the

status of the tested environment on those dates.

Scope
The Linux Foundation tasked Nettitude to perform a security assessment with the

following scope:

Component Repository

Indy Node https://github.com/hyperledger/indy-node

Plenum https://github.com/hyperledger/indy-plenum

Hyperledger Indy Project

Enhancements
https://github.com/hyperledger/indy-hipe

Shared crypto library https://github.com/hyperledger/indy-crypto

Reference agents https://github.com/hyperledger/indy-agent

Anonymous credentials https://github.com/hyperledger/indy-anoncreds

https://github.com/hyperledger/indy-node
https://github.com/hyperledger/indy-plenum
https://github.com/hyperledger/indy-crypto
https://github.com/hyperledger/indy-agent
https://github.com/hyperledger/indy-anoncreds

Customer Confidential Security Document

6

Testing Windows Observations and Constraints
Hyperledger Indy has a large codebase, and it would be possible to spend a very large

amount of time fruitfully looking for vulnerabilities. In this context, the time frame

provisioned for the completion of this engagement represented a reasonable trade-

off between time and thoroughness. No constraints were encountered during the

engagement.

Findings Summary
During the engagement, a total number of nine findings were identified. The following

table shows the categorisation by severity:

0
Critical

0
High

2
Medium

6
Low

1

Info.

Python wrapper test
https://github.com/hyperledger/indy-post-install-

automation

Indy Jenkins Pipeline Library
https://github.com/hyperledger/indy-jenkins-

pipeline-lib

Indy SDK https://github.com/hyperledger/indy-sdk

https://github.com/hyperledger/indy-post-install-automation
https://github.com/hyperledger/indy-post-install-automation
https://github.com/hyperledger/indy-jenkins-pipeline-lib
https://github.com/hyperledger/indy-jenkins-pipeline-lib

Customer Confidential Security Document 7

5 Findings

1. Security Assessment

Component Description Severity Recommendation Ref.

indy-plenum
Use of random.choice to generate

cryptographic seed
Medium

Rewrite randomSeed to use a secure

random number generator.
6.1

product-wide issue
Sensitive data not consistently zeroed

after use
Medium

Zero memory containing sensitive data

that is no longer needed.
6.2

product-wide issue
Cryptographic operations do not execute

in constant time
Low

Use cryptographic operations which

execute in constant time.
6.3

indy-plenum

Class

storage.directory_store.DirectoryStore

potentially vulnerable to path traversal

attack

Low
Either escape unsafe characters, or

encode the entire key.
6.4

indy-plenum
Functions ledger.util.count_bits_set and

highest_bit_set vulnerable to infinite loop
Low

Throw an exception if the input is

negative.
6.5

indy-plenum
Race condition in

stp_zmq.util._create_file_with_mode
Low

Use os.open in preference to open if a

non-default file mode is required.
6.6

Customer Confidential Security Document 8

indy-plenum

Incorrect handling of insufficient data by

common.serializers.compact_serializer.Co

mpactSerializer for compound field names

Low
Check that items list is not empty before

attempting to pop a value from it.
6.7

indy-plenum

Function

plenum.common.util.randomString does

not return fully random result

Low Correct off-by-one error. 6.8

indy-plenum
plenum.client.Wallet is serialised using

jsonpickle
Info.

Code already scheduled for removal, no

further action required.
6.9

Customer Confidential Security Document 9

6 Analysis: Security Assessment

6.1 Medium: Use of random.choice to generate cryptographic seed

Description of the Issue

The function stp_core.crypto.util.randomSeed uses the function random.choice to

generate the seed, but it is not suitable for cryptographic use.

According to the documentation, the values generated by the Python random module

are generally pseudo-random in nature. It specifically warns that this makes them

unsuitable for use in cryptographic applications:

Figure 1: Warning in Python random module

In indy-plenum, the function stp_core.crypto.util.randomSeed uses random.choice to

generate the seed:

Figure 2: Use of random.choice in function randomSeed

This is in turn called from a number of places, most of which appear to be ultimately

for test purposes, however the call in stp_zmq.util.createEncandSigKeys:

Figure 3: use of function randomSeed in function createEncAndSigKeys

which is called from three other locations, and does not at first sight appear to be test

code. Furthermore, even if all current usage were safe, there is no indication in

randomSeed that it is unsuitable for cryptographic use. The same applies to functions

which call it, directly or indirectly, that are not themselves obvious test harnesses.

Customer Confidential Security Document 10

Note that there are numerous examples of non-cryptographic random number

generators being used in test code, however this is fully acceptable since it is not

intended for use in a production environment.

Affected Components

 indy-plenum

Nettitude Recommends

The simplest option for remediation would be to:

1 Rewrite randomSeed to use a secure random number generator. A suitable

choice for this, which is already used elsewhere by Indy, would be

libnacl.randombytes.

Further Reading

 Python 3.7.1, random — Generate pseudo-random numbers

(https://docs.python.org/3/library/random.html)

https://docs.python.org/3/library/random.html

Customer Confidential Security Document 11

6.2 Medium: Sensitive data not consistently zeroed after use

Description of the Issue

Security would be improved by consistently zeroing sensitive information in memory

when it is no longer needed.

In cryptographic software it is considered good practice to overwrite sensitive

information with zeros once that information no longer needs to be kept. Under ideal

circumstances this would not be necessary, as the operating system ought then to

provide sufficient isolation between processes to ensure that no information can leak,

regardless of how it is discarded. However this is not necessarily a safe assumption in

practice, due to the potential for:

 Attacks against the operating system or CPU which circumvent process isolation.

Notable examples include Meltdown and Spectre.

 Vulnerabilities in application or library code which allow leakage of information. An

example of this is the Heartbleed vulnerability in OpenSSL.

Two of the main challenges which would face an attacker attempting to use these

techniques are firstly performing the attack at a time when the sensitive information

is present in memory in unencrypted form, and secondly finding the sensitive

information from amongst what may be a very large volume of other data. Having

more copies of the information present, for longer periods of time, is likely to make

this easier.

However, whether this countermeasure is worthwhile in a particular context will

depend upon the value of the sensitive information, the additional code complexity

required to perform the zeroing (if it is feasible at all), and the likelihood of attack given

the available attack surface.

Hyperledger Indy does zero some sensitive data after use, however it does not appear

to do so routinely. For example, in the class services::wallet::wallet::Keys, the functions

serialize_encrypted and deserialize_encrypted call the function memzero on the

intermediate (serialized but unencrypted) values that they create.

Customer Confidential Security Document 12

Figure 4: Exampl of memzero being used

However, in the function raw_master_key in services::wallet::encryption, the

intermediate value resulting from base58 decoding of the passphrase does not appear

to be securely disposed of:

Figure 5: Example where sensitive data is not zeroed

Partial application of zeroing is of limited value, since the attacker only needs one copy

of the sensitive data. However, a valid distinction can be drawn between the client and

server components of Indy:

 These will typically be running in separate environments, so a weakness in one does

not necessarily compromise the other.

 The server is arguably at lower risk, since it is likely to be run in a container in which

it is the only substantive package executing.

 Individual server credentials are of limited value, since it is in the nature of a

blockchain system not to trust individual nodes (however an attack which yielded

credentials for a large part of the network would be of high value).

A further consideration is that zeroing would likely to be more straightforward for

components written in Rust than in Python, due to the differing extent to which

memory management is abstracted by these two languages. Options for obtaining

better control over Python objects include use of mutable objects (such as bytearray)

in place of immutable ones, or use of native code. Some care may be necessary to

ensure that any zeroing operations are not optimized away by the compiler.

Customer Confidential Security Document 13

This issue has been classed as medium severity on account of the encrypted wallet

capability, this being both at relatively high risk of attack, and having evidence that

zeroing of memory was an intended design feature. For other parts of the codebase it

could reasonably be considered low severity.

Affected Components

 Product-wide issue

Nettitude Recommends

1 It would be desirable for sensitive data to be routinely and consistently zeroed

after use, throughout the codebase.

2 The SDK, and the encrypted wallet capability in particular, should be a higher

priority in this respect than the server.

Further Reading

 Libsodium utility functions

(https://docs.rs/sodiumoxide/0.0.16/sodiumoxide/utils/index.html)

 Clearing memory in Python

(https://www.sjoerdlangkemper.nl/2016/06/09/clearing-memory-in-python/)

https://docs.rs/sodiumoxide/0.0.16/sodiumoxide/utils/index.html
https://docs.rs/sodiumoxide/0.0.16/sodiumoxide/utils/index.html
https://www.sjoerdlangkemper.nl/2016/06/09/clearing-memory-in-python/

Customer Confidential Security Document 14

6.3 Low: Cryptographic operations do not execute in constant time

Description of the Issue

Some of the cryptographic operations performed by Hyperledger Indy have an

execution time which depends on the specific values processed. This creates a risk of

a timing attack being possible.

If the time taken to perform a cryptographic operation depends on the value of a

private key or other sensitive data, then an attacker may be able to deduce the content

of that data by observing how the elapsed time varies as a function of other input

parameters.

In order to assess whether a timing attack was likely to be feasible, Nettitude simulated

the behavior of the mul method of pair::PointG1 in the libindy-crypto package. This

uses amcl::pair::g1mul to perform the underlying multiplication operation:

Figure 6: Example of cryptographic operation which does not execute in constant time

The outcome was that:

 The execution time depended primarily on the magnitude of the multiplicand. The

relationship appeared to be close to linear in the number of bits. This is

unsurprising, and not necessarily a security concern.

 However, further dependency was observed on the number of bits set. This was of

a lesser magnitude, typically of the order of 1%, but of significantly greater security

concern due to it depending on the content rather than just the length.

On further investigation it was found that indy-crypto depends on version 0.1.2 of the

amcl Rust bindings:

Customer Confidential Security Document 15

Figure 7: Declaration of amcl dependency to indy-crypto

which in turn depends on version 2.2 of the generic amcl library. In addition to being

no longer supported, this precedes the introduction of constant-time algorithms in

version 3.1:

Figure 8: Support for constant-time operations in amcl version 3.1

It therefore seems likely that this issue could be at partially addressed by utilizing a

more recent version of amcl (however this is not the only cryptographic library on

which Indy depends).

Servers are more naturally vulnerable to timing attacks than clients, however it is not

inconceivable that (for example) and HTTP server might also be acting as an Indy client.

Affected Components

 Product-wide issue

Nettitude Recommends

1 Where practicable, use cryptographic operations which execute in constant

time.

Further Reading

 David Brumley and Dan Boneh, Remote timing attacks are practical. USENIX

Security Symposium, August 2003

(http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf)

 Paul C. Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems, CRYPTO 1996

(https://www.paulkocher.com/TimingAttacks.pdf)

http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf
https://www.paulkocher.com/TimingAttacks.pdf

Customer Confidential Security Document 16

6.4 Low: Class DirectoryStore potentially vulnerable to path traversal

attack

Description of the Issue

If an attacker were able to access a storage.directory_store.DirectoryStore using

arbitrary key names, it would be possible to access arbitrary files in the filesystem by

means of a path traversal attack. No method of exploitation has been found for this,

but nor has the possibility been excluded.

The DirectoryStore class implements a key-value store by mapping each key to a

filename, and each value to the content of the corresponding file.

The method used to form the pathname for a key is simply to append it to a given base

path, with an appropriate path separator between the two:

Figure 9: Unsafe path construction in DirectoryStore

This does not protect against path traversal, specifically:

 Keys containing the path separator character '/'

 Keys containing '..' as a path component

Note in particular that if the key begins with a path separator, it is treated as an

absolute path - causing it to completely replace the base path.

For this finding to be exploitable, it would be necessary for the attacker to access the

key-value store using an arbitrary chosen key. Within the Indy codebase, the only

usage of the DirectoryStore class would appear to be by ClientReqRepStoreFile. Keys

are constructed from a Request object by combining the identifier and request ID fields

with an intervening comma. Notwithstanding any validation which occurs elsewhere,

for the purposes of a Request object:

 The identifier is supposed to be a string and can have arbitrary content.

Customer Confidential Security Document 17

 The request ID is supposed to be an integer, and there is a type hint to this effect,

however in Python these are merely unenforced hints and there is nothing to

prevent an arbitrary string from being used instead.

The inclusion of the comma in the key would be a serious inconvenience to an attacker,

but not necessarily an insurmountable one.

A thorough audit of Request class usage has not been attempted, since this would take

rather more effort than adding countermeasures to the DirectoryStore class, and in

any event would not protect against future changes to the codebase.

Affected Components

 indy-plenum

Nettitude Recommends

Options for protecting against path traversal include:

 Providing an alternative representation for unsafe characters, introduced by some

form of escape character or sequence.

 Transforming the key into a completely different representation using a safe (or

safer) character set, for example using a variant of base-64.

The former is usually preferable when unsafe characters occur rarely (as will

presumably be the case in this instance during normal use), the latter when they occur

frequently.

Further Reading

 OWASP Project, Path Traversal

(https://www.owasp.org/index.php/Path_Traversal)

https://www.owasp.org/index.php/Path_Traversal

Customer Confidential Security Document 18

6.5 Low: Functions count_bits_set and highest_bit_set can enter infinite

loop

Description of the Issue

If a negative value is passed to ledger.util.count_bits_set or ledger.util.highest_bit_set,

these functions will loop forever. Whilst they do not currently appear to be used to

process any untrusted data, there would be a risk of a denial of service attack if they

were so used in the future.

The function count_bits_set is built around a loop which is supposed to progressively

reduce the input value to zero by clearing one bit per iteration:

Figure 10: Function count_bits_set

The same is true of the function highest_bit_set, although the mechanism differs in

detail:

Figure 11: Function highest_bit_set

Customer Confidential Security Document 19

The operation i &= i - 1 has the effect of clearing the least significant bit. It works for

fixed-length twos-complement integers (provided that overflows are tolerated), but

not for the arbitrary-length integers provided by Python.

The operation hi >>= 1 causes hi to be divided by 2, then rounded towards minus

infinity. This has the effect of always making the magnitude of hi smaller if it is positive,

but larger if it is negative.

Affected Components

 indy-plenum

Nettitude Recommends

The safest course of action would be to modify the functions so that negative inputs

have well-defined behavior. Since integers in Python are of arbitrary length, the

appropriate course of action would likely be to throw an exception.

Alternatively, if the above is not acceptable, it would be reasonable to add a comment

to the effect that it is the caller's responsibility to ensure that the input is non-negative,

and that the behavior in the case of negative inputs is undefined.

Customer Confidential Security Document 20

6.6 Low: Race condition in _create_file_with_mode

Description of the Issue

There is a race condition in the function stp_zmq.util._create_file_with_mode which

could potentially allow another user to gain access to the file content.

The function stp_zmq.util._create_file_with_mode is called to create files for storing

public or private keys, for example by the function _write_secret_key_file:

Figure 12: Example of usage of _create_file_with_mode

In this instance, the file in question will contain a secret key and it must not therefore

be accessible to other users. That is achieved by requesting a file mode of 0600.

The function _create_file_with_mode performs its task in two steps: first it creates the

file with the default access mode, then it changes the access mode to the one

requested:

Figure 13: Method _create_file_with_mode

On POSIX-compatible systems it is usual for the default file access mode to at least

allow read access from users in the same primary group, and not unusual for it to make

files world-readable. This creates a short window of opportunity during which an

attacker could open the file for reading. Once successfully opened by an attacker, and

Customer Confidential Security Document 21

provided the attacker keeps it open, changes to the access mode would not protect

the content of the file from being read.

Affected Components

 indy-plenum

Nettitude Recommends

If non-default file permissions are required then use the python function os.open in

preference to open. On POSIX-based systems this can be expected to map to the

corresponding system function, which is supposed to act atomically upon the

filesystem. Whilst this should not be considered an absolute guarantee of secure

behavior, it is likely to behave as intended for local native filesystems, and in the worst

case should at least be an improvement on two separate system calls. Ideally O_EXCL

would be used in combination with O_CREAT, with pre-existing files handled

separately (if at all).

Further Reading

 The Open Group Base Specifications Issue 7, "open"

(http://pubs.opengroup.org/onlinepubs/9699919799/functions/open.html)

http://pubs.opengroup.org/onlinepubs/9699919799/functions/open.html

Customer Confidential Security Document 22

6.7 Low: Compound field name handling by CompactSerializer

Description of the Issue

When there is insufficient data for CompactSerializer to deserialize a field with a

compound name, an exception is thrown instead of setting the field to None. If this

class was used to deserialized untrusted data, that might conceivably permit a denial

of service attack.

The usual behavior of CompactSerializer should there be insufficient data when

deserializing is to set any missing fields to None. There is documentation to this effect

in the implementation:

Figure 14: Handling of insufficient data for non-compound names

This ensures that such fields can be accessed without first checking that the key exists

(or alternatively, taking the risk of throwing an exception of type KeyError).

Fields with compound names are handled separately from non-compound names. The

latter includes a check that there are input items remaining before deserializing:

Figure 15: Test for sufficient data remaining for non-compound names

whereas the former does not:

Customer Confidential Security Document 23

Figure 16: Handling of compound names

The outcome is that the deserialize method can be induced by the data it reads to

throw an IndexError when this should not be possible. Whether this could be leveraged

to create a usable security exploit is questionable, and it is borderline whether it should

be considered a security issue. However it is at least a correctness issue, and should be

a straightforward matter to fix.

Affected Components

 indy-plenum

Nettitude Recommends

1 Modify deserialization function to check that items list is non-empty before

attempting to pop a value from it.

Customer Confidential Security Document 24

6.8 Low: Function randomString does not return fully random result

Description of the Issue

There is an off-by-one error in the function plenum.common.util.randomString which

means that returned values containing an odd number of hex digits cannot end with

an 'F'.

This occurs because the final digit is obtained by evaluating the expression

randombytes_uniform(15). The intent was presumably to obtain a number between 0

and 15 inclusive, however the function interprets its argument as an exclusive upper

bound, therefore the value 15 can never be generated.

To test this, Nettitude generated 100,000 values using randomString each with 3 hex

digits, then counted the number of occurrences of each value. As expected, no results

ending in an 'F' were observed.

The effect is to reduce the entropy of generated values by approximately 0.1 bits

compared to a random number generator with a uniform distribution. It is very unlikely

that this would ever make the difference between a vulnerability being exploitable or

not, however a fix is recommended on the grounds that the code does not behave as

expected.

(The term ‘bit’ is used here in its sense as a unit of information. The entropy of a

random number generator in bits is equal to –log2 p, where p is the probability that a

particular value will be generated on a particular occasion. An alternate way of

quantifying the difference is that it reduces the time required for a brute force attack

by 6.25%.)

Affected Components

 indy-plenum

Nettitude Recommends

1 Fix off-by-one error to allow all 16 possible digits to be generated.

Customer Confidential Security Document 25

6.9 Informational: plenum.client.Wallet is serialised using jsonpickle

Description of the Issue

The (deprecated) class plenum.client.Wallet is serialized using jsonpickle, which could

be exploited to enable arbitrary code execution in code managing a wallet for a third

party.

Note that the class to which this finding relates, plenum.client.Wallet, had already been

deprecated prior to the start of this security assessment. The risk described here should

therefore only materialize in the event that there is legacy code using this class in the

particular manner described, which is thought to be unlikely.

The jsonpickle website contains the following warning:

Figure 17: Warning in jsonpickle documentation

(jsonpickle is not unusual in this regard: deserialisation of untrusted data is inherently

risky, especially in a weakly-typed language such as Python.)

Deserialisation is performed by the decrypt function in plenum.client.Wallet:

Figure 18: Deserialization of encrypted wallet

In typical usage, it would be reasonable to expect wallets to be trusted data due to the

credentials that they contain. An attacker with control over an unencrypted wallet

already has the ability to impersonate the corresponding user, and it can be argued

that code execution adds little to this. However, it is not inconceivable that a service

could be created to manage wallets on behalf of third parties. Under those

circumstances, it might be advantageous for an attacker to create a malicious wallet in

order to achieve code execution on the server.

Customer Confidential Security Document 26

Affected Components

 indy-plenum

Nettitude Recommends

The Linux Foundation has indicated that this code is deprecated and already scheduled

for removal. No further action is required.

Further Reading

OWASP Top 10 (2017) A8: Insecure Deserialization

(https://www.owasp.org/index.php/Top_10-2017_A8-Insecure_Deserialization)

https://www.owasp.org/index.php/Top_10-2017_A8-Insecure_Deserialization

Customer Confidential Security Document 27

7 Appendix

A. Severity Rating Matrix

The severity rating is determined by the likelihood and impact of a vulnerability on a

system and, where possible, in the context in which that vulnerability is exposed, e.g.

remote attack vs. internal attack.

The table below is used to calculate the overall severity rating of an issue based on

these criteria.

This is not an assessment of risk as it does not include a valuation of the data or system,

but it does provide the ability to prioritize the vulnerabilities identified within the

target system or application and to integrate into their own risk management systems.

 Impact

Li
ke

lih
o

o
d

 Negligible Minimal Moderate Major Catastrophic

Rare LOW LOW LOW MEDIUM HIGH

Unlikely LOW LOW MEDIUM HIGH CRITICAL

Moderate LOW MEDIUM MEDIUM HIGH CRITICAL

Likely MEDIUM MEDIUM HIGH CRITICAL CRITICAL

Very Likely MEDIUM HIGH HIGH CRITICAL CRITICAL

Likelihood

The likelihood rating of a vulnerability encompasses both the likelihood of the

vulnerability being identified and attacked as well as the likelihood of that attack being

successful. This is evaluated by taking into consideration the following elements:

Exploitability

 Difficulty and technical knowledge or skill required to identify/exploit the issue

 Time or resources required to mount a successful attack

 Availability of exploit code and automated attack tools

Reproducibility

 Ease of reproducing a successful attack

Customer Confidential Security Document 28

 Additional requirements for the attack to be successful, for example:

o Victim user must be logged in

o Some level of interaction by the victim user is required

Discoverability

 Number of instances of the vulnerability identified in the system

 Level of authentication required to access affected components

 Accessibility of the system (internet-facing or internal)

 Degree of specific Insider knowledge required

Frequency

 How often the issue is likely to occur over a period of time

 History of the issue in the industry

 Existence of self-propagating malware targeting the issue

These factors will be employed to formulate a final likelihood rating for a given issue.

Impact

The impact rating assesses the significance of exposure to a particular vulnerability.

This is evaluated by considering the impacts to the affected system and the underlying

business. The factors under consideration are outlined in the following table.

Customer Confidential Security Document 29

Impact Negligible Minimal Moderate Major Catastrophic

Confidentiality Disclosure of
public information

Minor disclosure
of commercial-in-

confidence
information

Major disclosure
of commercial-in-

confidence
information

Minor disclosure
of highly-

confidential
information

Major disclosure
of highly

confidential
information

Integrity
Unauthorized

modification of
public data

Small-scale
unauthorized

modification of
private data

Large-scale
unauthorized

modification of
private data

Small-scale
unauthorized

modification of
trusted data

Large-scale
unauthorized

modification of
trusted data

Availability Minor increase in
processing load

Minor outage in a
business system

Outage or
unavailability of a
business system

Extended
unavailability or

outage of a
business system

Unavailability or
outage of a

business-critical
system

Brand or

Reputation

Complaints from
small number of

customers

Complaints from
small number of
customers across

a broader
customer base

Complaints from a
large number of
customers and
localized media

coverage

Short term
adverse large
scale media

coverage

Extended adverse
large scale media

coverage

Regulatory and

Legal
Warnings for

minor breaches

Formal caution for
regulatory

breaches or threat
of legal

proceedings

Targeted audit /
investigation by

regulator or minor
legal proceedings
brought against
the organization

Fines imposed and
negative media

coverage or major
legal proceedings
brought against
the organization

Service line closed
down

Customer Confidential Security Document 30

B. Penetration Testing Methodology

Nettitude has a series of approaches for conducting Penetration Tests.

Black Box Testing

In a Black Box test, the client does not provide Nettitude with any information about

their infrastructure. For internal tests the customer may provide no more than a

network point for the tester to connect in to. For external tests, this may simply be a

URL or even just the company name that is in scope for assessment.

Nettitude is tasked with testing the environment as if they were an attacker with no

information about the infrastructure or application logic that they are testing. Black

Box tests tend to take longer to commission than White Box tests and may identify less

exposures and vulnerabilities than those of White Box tests.

White Box Testing

In a White Box test, clients provide Nettitude with information about the applications

and infrastructure prior to the commencement of the testing engagement. Usernames

and Passwords are provided to Nettitude's testing team as part of the engagement,

and the client may provide Nettitude’s consultants with access to source code. In this

type of testing engagement, Nettitude works closely with the client to perform the

assessment. These types of tests tend to gain deeper understanding of the application

and infrastructure logic, and may generate highly comprehensive test results.

Grey Box Testing

A Grey Box test is a blend of Black Box testing techniques and White Box testing

techniques. In Grey Box testing, clients provide Nettitude with snippets of information

to help with the testing procedures. This results in a highly focused test.

10

