

Penetration Testing Management Report

Prepared for: The Linux Foundation
System: Hyperledger Indy

Type: Security Assessment

Author: Graham Shaw
Date: 13 November 2018

Version: 1.0

Customer Confidential Security Document 2

Report Contents

High Level Assessment __ 3

Overall Security Posture ___ 3

System Analysis __ 4

Next Steps __ 6

Distribution List __ 7

Revision History __ 7

10

The contents of this report belong to The Linux Foundation. The findings, information and recommendations in this document

are for information purposes only and are based on a point in time assessment of the environment within scope. Nettitude, and

the report’s authors, accept no responsibility for any errors, omissions, or misleading statements, in this report, or for any loss

that may arise for reliance on any information and opinions expressed. Nettitude recommends that all advice and

recommendations are reviewed, a risk assessment conducted and change control processes followed before any remediation

work is conducted. Nettitude does not hold any responsibility for any work conducted as a result of the recommendations

provided in this report.

file:///C:/Users/gshaw/Desktop/Indy/MGMT_REPORT_Penetration_Test_The_Linux_Foundation_2018-10-31_v1.0.docx%23_Toc529882968

Customer Confidential Security Document 3

High Level Assessment

The Linux Foundation engaged with Nettitude in September 2018 in order to assess

the overall security posture of their environment.

Based on The Linux Foundation’s risk profile, primary security concerns and the

vulnerabilities identified at the point of the engagement, Nettitude have found the

overall security posture to require moderate attention.

Limitations and Constraints

No limitations were encountered during the engagement.

0

0

2

6

Critical

High

Medium

Low

Nettitude were able to:

 Find cryptographic material generated by a

non-cryptographic random number

generator

 Find sensitive data not zeroed after use

 Demonstrate that cryptographic operations

were not executing in constant time

Overall Security Posture

STRONG

MODERATE

REQUIRES ATTENTION

WEAK

Vulnerabilities by Severity

Customer Confidential Security Document 4

System Analysis

Not all random number generators are suitable for use in cryptographic applications,

because it is possible for a sequence to have good statistical properties yet still be

predictable by a sophisticated attacker. For the most part, the generators used by

Hyperledger Indy are fit for purpose, however one instance was found in the function

stp_core.crypto.util.randomSeed where a non-cryptographic generator had been used

inappropriately.

It is good practice in cryptographic code to overwrite sensitive data with zeros when it

is no longer needed. Failure to do so is not by itself a vulnerability, since the operating

system should ensure the privacy of data in memory. However, if another vulnerability

causes that privacy to be compromised, it is better if the sensitive data is not there to

be found. Examples of historical vulnerabilities which have allowed read access to

memory include Meltdown and Spectre (exploiting the hardware) and Heartbleed

(exploiting library code).

This countermeasure is employed to some extent in connection with the encrypted

wallet feature of indy-sdk, however its effectiveness will be limited since there are calls

to other functions which do not zero sensitive data. It therefore seems likely that the

intended level of protection is not being achieved. For other parts of the codebase

there is a policy decision to be made, however the ideal would be to perform zeroing

throughout.

Also, good practice is for cryptographic code to execute in constant time, in order to

prevent timing attacks. For the specific instance analyzed in the technical report, it

appears likely that using a more recent version of the amcl library would improve

matters. However, this is an issue that would affect many parts of the codebase, and

may not always be straightforward to address, so again there is a policy decision to be

made.

Other issues found were:

 A potential path-traversal issue in the DirectoryStore class

 A potential denial of service issue in the functions count_bits_set and

highest_bit_set

Customer Confidential Security Document 5

 A race condition in the function _create_file_with_mode, which might

conceivably allow an attacker to gain access to a private key

 A method by which the CompactSerializer class can be induced to throw an

unexpected exception

 Unsafe deserialization of plenum.client.Wallet (but in code which is already

scheduled for removal)

 An off-by-one error in the function randomString which causes the result to be

slightly less random than it should be

All of these are either low impact, and/or difficult or impossible to exploit as the code

in question is used currently. However, they are also relatively straightforward to

address, so this is recommended in order to improve the robustness of the code.

Customer Confidential Security Document 6

Next Steps

Nettitude recommends that The Linux Foundation perform the following post

engagement activities in the order of priority indicated.

 Activity Description Priority

1
Debrief from

Nettitude

Nettitude will deliver a formal debrief

to The Linux Foundation in order to

ensure that the findings of this

engagement have been fully

comprehended and to help assist in

the formulation of a remediation plan.

++++

2 Cryptographic RNG

Replace use of random.choice with a

cryptographic random number

generator
++

3 Zero memory
Overwrite sensitive data with zeros

when it no longer needs to be kept ++

4

Constant-time

cryptographic

operations

Use cryptographic primitives which

execute in constant time +

Customer Confidential Security Document 7

Distribution List

Nettitude Name Title

Graham Shaw Security Consultant

Jose Lopes Security Consultant

Miles Corn Account Manager

David Huseby Security Maven

Revision History

Version Issue Date Issued by Comments

0.1 04 November 2018 Graham Shaw Initial Draft

0.2 08 November 2018 Jose Lopes Quality Assurance

0.3 12 November 2018 Miles Corn Quality Assurance

1.0 13 November 2018 Graham Shaw Final

The Linux Foundation Name Title

