

Customer Confidential Security Document 1

Security Assessment Management Report

Prepared for: The Linux Foundation

System: Fabric
Type: Security Assessment

Author: Graham Shaw

Date: 19th September 2017
Version: 1.1

Customer Confidential Security Document 2

Report Contents

Report Contents __ 2

High Level Assessment ___ 3

Overall Security Posture __ 3

Nettitude were able to: __ 3

Limitations __ 3

System Analysis __ 4

Next Steps __ 6

Distribution List __ 7

Revision History __ 7

file:///C:/Users/mathi/Documents/Internal/Management%20Report/try2/fun/Shawtooth/MANAGEMENT_REPORT_Linux_Foundation_Fabric_August_2017_v1.1.docx%23_Toc502850043
file:///C:/Users/mathi/Documents/Internal/Management%20Report/try2/fun/Shawtooth/MANAGEMENT_REPORT_Linux_Foundation_Fabric_August_2017_v1.1.docx%23_Toc502850044

Customer Confidential Security Document 3

High Level Assessment

The Linux Foundation engaged with Nettitude in August 2017 in order to assess the overall security

posture of their Fabric software product.

Based on The Linux Foundation’s risk profile, primary security concerns and the vulnerabilities

identified at the point of the engagement, Nettitude have found Fabric to require moderate attention.

Limitations
Some limitations and constraints were encountered during the engagement. Please refer to the

technical report for more details.

Code Quality

Software Design

Configuration

Injection

Vulnerability category breakdown

Critical High Medium Low

Nettitude were able to:

▪ Write malicious chaincode capable of

performing an nmap scan

▪ Connect to a command-and-control

server from within malicious chaincode

▪ Fabricate log entries

Overall Security Posture

STRONG

MODERATE ATTENTION

ATTENTION REQUIRED

IMIDIATE ATTENTION

2

3

Severity clasification

Critical High Medium Low

Customer Confidential Security Document 4

System Analysis

Fabric runs chaincode in a Docker container in order to securely isolate it from the rest of the system.

It is good that it does this, and the measures in place would be effective in preventing many types of

malicious activity, however they are insufficient to prevent malicious chaincode from being written.

The main concerns are that the chaincode has access to networking, can very easily download and

install further software packages (including security tools), and can run for long periods of time. By

bringing these capabilities together it would be possible to write a type of malware known as a Remote

Access Trojan (RAT), the purpose of which is to act as a foothold onto a corporate network in order to

allow other systems to be scanned and attached.

To demonstrate this, Nettitude wrote chaincode to perform a security scan of a machine attached to

an internal network which is not directly reachable from the public Internet. The result was then

exfiltrated to another machine acting as a command-and-control server:

Figure 1: Port scan results collected and exfiltrated by malicious chaincode

Installation of the RAT would not in itself have any direct business impact, however it would act as an

excellent base from which a threat actor could undertake a more comprehensive attack. For example,

if any vulnerable network services were found during the port scan, the RAT could be used to exploit

them and pivot to other systems.

Nettitude recognises that installation of malicious chaincode would be a non-trivial exercise for most

threat actors given the level of access required, however there are some plausible scenarios:

▪ A threat actor could create a new ledger with associated malicious chaincode, and persuade

others to participate.

▪ A threat actor could infiltrate an organisation responsible for developing and maintaining the

chaincode for an existing ledger, then publish an update.

Fabric is also vulnerable to a method of attack known as log injection, which is made possible when

unvalidated inputs are written verbatim to a log. This would similarly have no direct business impact,

Customer Confidential Security Document 5

however as part of a larger attack it might be used to fabricate log entries to mislead incident response

efforts, or corrupt the log to prevent it from being processed by automated monitoring systems.

One function was found which was potentially vulnerable to a technique known as code injection, but

not in a way that is exploitable as the program as a whole is currently written. This is a symptom of a

larger concern, which is that the subcomponents of the system (functions and data structures) do not

have detailed interface specifications which would allow a code audit to efficiently determine:

▪ Whether a function body correctly implements the required behaviour, and

▪ Whether calls to that function elsewhere in the program are using it correctly and

appropriately.

Such interface specifications would certainly have improved the efficiency of the code review

performed by Nettitude, and would have allowed greater depth and coverage to be achieved. It would

also reduce the risk of misunderstandings when future changes are made by the code. The alternative

is to engage in what amounts to reverse engineering of the existing code, which is both time-

consuming and error-prone. The ideal is to provide a sufficiently-detailed specification such that the

function could be:

▪ Safely re-written without reference to the locations from which it is called, and

▪ Safely used without reference to the current implementation.

Finally, Nettitude has some concerns about the use of remote imports in chaincode. Attempts to

exploit this were unsuccessful due to the mitigations in place, however there is potential for chaincode

to be written with a very large attack surface spanning multiple organisations. Whitelisting of third-

party repositories is recommended.

Attempts were made to fuzz the HTTP- and gRPC-based network services, without success. This was

done at both the presentation layer and the application layer, the latter making use of the supplied

SDK to send well-formed messages which would exercise deeper parts of the attack surface.

Attempts were made to find weaknesses in the software by penetration testing. This covered issues

such as TLS configuration, certificate pinning, authentication/session management, use of HTTP

headers, path traversal and argument validation. No weaknesses were found.

Customer Confidential Security Document 6

Next Steps

Nettitude recommends that The Linux Foundation perform the following post engagement activities

in the order of priority indicated.

 Activity Description Priority

1 Debrief from Nettitude

Nettitude will deliver a formal debrief to

The Linux Foundation in order to ensure

that the findings of this engagement have

been fully comprehended and to help

assist in the formulation of a remediation

plan.

++++

2 Chaincode sandboxing

Improve sandboxing of chaincode to limit

network access and persistence, and to

execute from an unprivileged user

account.

+++

3 Log injection
Sanitise untrusted strings before inserting

them into log messages. ++

4 Comment headers

Provide comment headers which provide

a detailed specification of the behaviour

of each function.
+

Customer Confidential Security Document 7

Distribution List

Nettitude Name Title

Graham Shaw Senior Research Analyst

Patrick Matthews Security Consultant

Jose Lopes Security Consultant

Kristopher Vasilik Key Account Manager

The Linux Foundation Name Title

David Huseby Security Maven, Hyperledger

Revision History

Version Issue Date Issue By Comments

0.1 1st September 2017 Graham Shaw Initial Draft

0.2 4th September 2017 Jose Lopes Quality Assurance

0.3 6th September 2017 Kristopher Vasilik Quality Assurance

1.0 8th September 2017 Graham Shaw Final

1.1 19th September 2017 Graham Shaw Added pentest details

The contents of this report belong to The Linux Foundation. They have been provided by Nettitude based on

the work detailed within this report and were accurate at the time of testing. Nettitude presents no guarantee

that the details in this report are a true reflection of the tested environment at the present time.

