

Customer Confidential Security Document 1

Penetration Testing Technical Report

Prepared for: The Linux Foundation
System: Hyperledger Fabric v1.4 and v2.0

Type: Security Assessment

Author: Graham Shaw
Date: 8 August 2019

Version: 1.0

Customer Confidential Security Document

2

1 Report Contents

1 Report Contents __ 2

2 Distribution List ___ 3

3 Revision History ___ 4

4 Engagement Particulars __ 5

5 Findings ___ 7

1. Security Assessment ___ 7

6 Analysis: Security Assessment ___ 8

6.1 High: Content of Private Data Collections potentially guessable using SHA256 as

an oracle __ 8

6.2 Low: PRNG seed length shorter than recommended ____________________10

6.3 Low: pkcs7UnPadding does not check for an input length of zero __________13

6.4 Low: Undefined mode bit allowed in chaincode tarfiles __________________14

7 Further observations __15

7.1 Introduction __15

7.2 bccsp/utils/io.go (DirExists) __15

7.3 bccsp/sw/aes.go (GetRandomBytes) _________________________________15

7.4 bccsp/sw/aes.go (GetRandomBytes) _________________________________15

7.5 bccsp/sw/aeskey.go (SKI) __15

7.6 bccsp/sw/conf.go (config)__16

7.7 bccsp/sw/fileks (StoreKey) ___16

7.8 bccsp/sw/keyimport.go (KeyImport) _________________________________16

8 Appendix ___17

A. Severity Rating Matrix ___17

B. Penetration Testing Methodology ___________________________________20

Customer Confidential Security Document

3

2 Distribution List

Nettitude Name Title

Graham Shaw Security Consultant

Lilith Toro Security Consultant

Jose Lopes Security Consultant

Miles Corn Account Manager

David Huseby Security Maven

The Linux Foundation Name Title

Customer Confidential Security Document

4

3 Revision History

Version Issue Date Issued by Comments

0.1 26 July 2019 Graham Shaw Initial Draft

0.2 28 July 2019 Jose Lopes Quality Assurance

0.3 29 July 2019 Miles Corn Quality Assurance

1.0 8 August 2019 Graham Shaw Final

Customer Confidential Security Document

5

4 Engagement Particulars

Background
This report serves as technical documentation for the recent penetration test

performed for The Linux Foundation by Nettitude. For a high-level assessment of the

tested environment, please refer to the associated management report:

MGMT_REPORT_Penetration_Test_The_Linux_Foundation_Fabric_2019-07-

26_v1.0.pdf

Rules of Engagement
The assessment was performed in line with the following rules of engagement:

 Nettitude’s product assurance testing methodology was used.

 Testing of infrastructure owned by The Linux Foundation was not permitted.

 The testing and reporting was permitted and performed during a 40 day

period; 3-Jun-19 to 26-Jul-19. Any results held in this report relate to the

status of the tested environment on those dates.

Scope
The Linux Foundation tasked Nettitude to perform a security assessment with the

following scope:

The versions tested were v1.4 and v2.0.0-alpha.

Component Description

https://github.com/hyperledger/fabric Fabric

https://github.com/hyperledger/fabric-ca Certificate Authority

https://github.com/hyperledger/fabric-chaincode-* Chaincode support

https://github.com/hyperledger/fabric-sdk-* Software development kits

https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric-ca
https://github.com/hyperledger/fabric-chaincode-*
https://github.com/hyperledger/fabric-sdk-*

Customer Confidential Security Document

6

Testing Windows Observations and Constraints
The time frame provisioned for the completion of this engagement was adequate.

No constraints were encountered during the engagement.

Findings Summary
During the engagement, a total number of 4 findings were identified. The following

table shows the categorization by severity:

0
Critical

1
High

0
Medium

3
Low

0

Info.

In addition to these findings, a number of further observations were recorded which

(so far as Nettitude can determine) have no bearing on the security of the product,

but are nevertheless issues which The Linux Foundation may wish to address.

Customer Confidential Security Document 7

5 Findings

1. Security Assessment

Component Description Severity Recommendation Ref.

Fabric
Content of Private Data Collection potentially

guessable by using SHA256 as an oracle
High Salt private data prior to hashing 6.1

Fabric
PRNG seed length shorter than

recommended
Low

Supply recommended seed length of 128

bits
6.2

Fabric
pkcs7UnPadding does not check for an input

length of zero
Low

Return gracefully with an error if length is

zero
6.3

Fabric
Undefined mode bit allowed in chaincode

tarfiles
Low Disallow the 0100000 bit 6.4

Customer Confidential Security Document 8

6 Analysis: Security Assessment

6.1 High: Content of Private Data Collections potentially guessable using

SHA256 as an oracle

Description of the Issue

Private Data Collections are used to keep transactions private between two or more

parties but still take advantage of the unique characteristics of the blockchain. The

private data is not itself recorded on the blockchain, however sufficient information is

kept to allow interested parties to prove that the transactions in question took place.

In most instances, the data on both the public and private data collections will be highly

structured, similar to JSON or YAML, only recording crucial differences over a limited

state space. For example, a transaction about a car might be of the form: [car_type:

saloon, color: red, price: 10000, brand: BMW].

In addition, a third party might be privy to the underlying structure of this data, for

example a third party that uses a different private data channel with the same entity

using the same underlying data structure (e.g. a car dealership dealing with 2 different

clients).

Ultimately, when Private Data Collections’ hashes are written to the public blockchain,

a SHA256 hash of the underlying data is created without any additional input or

parameters.

A malicious attacker can realistically perform brute force attack against a range of

hashes gathered from the blockchain if they know the underlying data structure: they

just need to create SHA256 hashes of all possible values.

To use the previous example an attacker can first start enumerating all the possible

brands of cars that exist, then colors etc., this should be much quicker than a purely

brute force attack and ultimately becomes feasible in a real-world scenario.

In some cases, the underlying structure of the data might be too complex to be

realistically brute forced (say it contains some sort of pseudo-random value), however

the issue remains that the security of the system is a function of the state space of the

structure of the data as well as the data itself.

Customer Confidential Security Document 9

This presents a problem as end users cannot securely use arbitrarily low complexity

data in their usage of Private Data Collections.

In addition, there exists a related issue: Transactions with the same data will have the

same hash, so even if the attacker cannot retrieve the plaintext it is revealed that the

same data was transmitted.

Affected Components

 Fabric (v1.4 and v2.0.0-alpha)

Nettitude Recommends

1. Introduce some secret value only known to the participating parties of a given

Private Data Collection, such as salt added to the input. The secret value might

be a nonce generated via a shared deterministic algorithm and secret seed.

Ideally it would be 256 bits long to preserve the full strength of SHA256,

however it is likely that a much shorter value would be sufficient in practice.

2. It might be worthwhile replacing the hashing algorithm (SHA256) with one that

is more resistant to brute force attempts (e.g. scrypt)

A workaround which could be implemented by end users would be to incorporate the

salt into the private data passed to Fabric, however it would be less error-prone for

Fabric to salt the data itself.

Customer Confidential Security Document 10

6.2 Low: PRNG seed length shorter than recommended

Description of the Issue

The source code for the class amcl.RAND states that it should be seeded with at least

128 bytes of raw entropy:

Figure 1: Comments serving as documentation for amcl.Seed

However, the function idemix.GetRand seeds it with only 32 bytes:

Figure 2: Generation of seed for amcl.Rand by idemix.GetRand

This does not necessarily imply that the random number generator is exploitable,

because 128 bytes may be a conservative figure and 32 bytes may be sufficient. The

available evidence suggests that this is probably the case. Nevertheless, the current

usage is unsatisfactory because:

1 idemix.GetRand is relying on amcl.RAND behaving securely outside the

envelope promised by the documentation.

2 The decision to recommend 128 bytes may have been intended to provide a

margin of safety, which has now been eroded.

The random number generator provided by amcl.RAND is based on the design of

Marsaglia & Zaman, which by itself is not cryptographically secure, however the output

is hashed using SHA256 prior to use. Assuming that SHA256 is secure, this should be

sufficient to preclude any attack based on working backwards from the content of the

generated random number stream. That leaves the possibility of an oracle attack,

working forwards from a hypothesis about the state of the generator.

Customer Confidential Security Document 11

Oracle attacks can be prevented by the simple expedient of ensuring that there are too

many possible values to search. In this instance, there appear to be two factors which

could limit the size of the search space:

 The entropy content of the seed.

 The initial hashing of the seed using SHA256 (which imposes a ceiling of 256 bits on

the amount of entropy that can be introduced by the seed).

The generator is capable of utilizing low-quality random data as its seed, however the

seed provided appears to be of high quality, meaning that the entropy content can be

expected to be approximately equal to the length. From this, it can be concluded that:

 The seed length needed to make an oracle attack impracticable is likely in the range

8 to 16 bytes (32 to 128 bits).

 A seed length of 32 bytes, from a high-quality random source, provides close to the

amount of entropy that the random number generator can make use of. However,

it does not reach that limit, because of collisions.

There is therefore some minor erosion of the margin of safety, but much less than the

difference between 128 bytes and 32 bytes might suggest.

Some of the uses of idemix.GetRand are in test code, however the use in idemixca.go

appears not to be.

Affected Components

 Fabric (v1.4 and v2.0.0-alpha)

Nettitude Recommends

Nettitude recommends one of the following, in order of preference:

1 Supply amcl.RAND with a 128-byte seed, as specified in the relevant header

comment.

2 Arrange for amcl.RAND to be updated with an amendment to this

requirement.

3 Add commentary to idemix.RAND containing an analysis which explains why

32 bytes is considered safe.

Customer Confidential Security Document 12

Further Reading

 Eric Bach, "Efficient Prediction of Marsaglia–Zaman Random Number

Generators", IEEE Transactions on Information Theory, 44, pp1253-1257, May

1998

https://pdfs.semanticscholar.org/1a7c/27fc93320aace5a456d198e1053a67b5d277.pdf
https://pdfs.semanticscholar.org/1a7c/27fc93320aace5a456d198e1053a67b5d277.pdf

Customer Confidential Security Document 13

6.3 Low: pkcs7UnPadding does not check for an input length of zero

Description of the Issue

The function pkcs7UnPadding in bccsp/sw/aes.go does not check for the case of

len(src) == 0, and would panic (as opposed to returning an error) if that was the case.

The condition cannot occur in normal use, since padding would always result in there

being at least one block. However:

 Due to the location of this function in the call graph, it would be a non-trivial

exercise to exclude the possibility that this could be exploited to cause a denial

of service using crafted input (and certainly easier to fix the issue than attempt

a thorough investigation).

 Irrespective of current usage, future code changes could potentially make this

issue exploitable.

Affected Components

 Fabric (v1.4 and v2.0.0-alpha)

Nettitude Recommends

1 Return gracefully with an error if len(src) == 0.

Customer Confidential Security Document 14

6.4 Low: Undefined mode bit allowed in chaincode tarfiles

Description of the Issue

When tar files containing chaincode are validated, the mode flags for each file are

checked against the mask 0100666. The bits 0666 correspond to a mode of -rw-rw-rw

and it is fully appropriate to allow them. According to the comments the bit 0100000

is supposedly the ISREG bit, meaning that the file in question is a regular file. If that

were the case then it too should also be allowed.

However, the relevant POSIX documentation does not list ISREG as a valid mode bit in

a ustar file, nor does it appear to be used by the other common types of tarfile1.

It is unlikely that setting this bit would facilitate any malicious behavior, and Nettitude

has found no reason to believe that it would have any effect at all. However, the fact

that this mode bit is currently unassigned means that in principle it could be used for

any purpose in the future, with arbitrary effect on the security properties of the files

in question.

Affected Components

 Fabric (v1.4 and v2.0.0-alpha)

Nettitude Recommends

1 Disallow the 0100000 bit

Further Reading

 Pax – portable archive interchange, The Open Group Base Specifications Issue

7, 2018 edition

1 It is valid in cpio files, and this may explain where it came from, however, cpio files are not tarfiles.

http://pubs.opengroup.org/onlinepubs/9699919799/

Customer Confidential Security Document 15

7 Further observations

7.1 Introduction

So far as Nettitude has been able to determine the following issues have no bearing

on the security of Hyperledger Fabric even if a precautionary approach is taken.

However, they represent anomalies which were spotted in the codebase which The

Linux Foundation may wish to address.

7.2 bccsp/utils/io.go (DirExists)

Contrary to what the comment (and function name) would lead you to expect, this

only checks that there is an object at the specified pathname, not that it is a directory.

7.3 bccsp/sw/aes.go (GetRandomBytes)

The error message states that the length must be larger than zero, but the code allows

it to be equal to zero.

7.4 bccsp/sw/aes.go (GetRandomBytes)

The test for n != len is unreachable unless the implementation of rand.Read is non-

conformant with the published API, in which case a different (and more alarming) error

message would be called for2. If you wish to report failure to fill the buffer using this

message then the test must precede the one for err != nil.

7.5 bccsp/sw/aeskey.go (SKI)

Using the SHA256 of the secret key as the SKI ought to be safe given that Fabric already

relies upon SHA256 for preimage resistance in other parts of the codebase, and the

secret key certainly ought not to be guessable. However, it could be argued that having

an input that is half the length of the output makes the security case less strong than

might otherwise be wished, and that the process can be made more obviously safe by

relying on the security guarantees provided by AES itself.

It may be too late to make changes to this without causing backward compatibility

problems. However, given free choice, Nettitude’s recommendation would be to take

2 Note that it is only the text of error message which is at issue here, and this observation is not intended to discourage
the inclusion of both tests.

Customer Confidential Security Document 16

a random but fixed block of plaintext, encrypt that using the secret key, then hash the

ciphertext to produce the SKI.

7.6 bccsp/sw/conf.go (config)

This class has members named aesBitLength and rsaBitLength, however whereas the

latter is measured in bits (as the name suggests), the former is measured in bytes.

There does not appear to be anything wrong with the usage given these meanings,

however the chosen names introduce significant risk of confusion.

7.7 bccsp/sw/fileks (StoreKey)

The in-memory keystore checks whether a key exists before storing it, whereas the

file-based keystore simply overwrites it. Since they are implementations of the same

API, it would be reasonable to expect the same semantics.

It should also be noted that the file-based keystore is capable of some very non-

intuitive behavior if there were two different key types with the same SKI, or if an

attacker were to gain access to the directory where the key files are stored, due mainly

to the way in which it handles extensions. However, it appears to behave correctly in

all states which should be reachable in normal use.

7.8 bccsp/sw/keyimport.go (KeyImport)

The KeyImport function for aes256ImportKeyOptsKeyImporter checks that the raw

data is exactly 32 bytes long, whereas the one for hmacImportKeyOptsKeyImporter

only checks that it is non-empty. Even if the latter permits more than one possible key

length (not checked this), it could be better validated for consistency.

Customer Confidential Security Document 17

8 Appendix

A. Severity Rating Matrix

The severity rating is determined by the likelihood and impact of a vulnerability on a

system and, where possible, in the context in which that vulnerability is exposed, e.g.

remote attack vs. internal attack.

The table below is used to calculate the overall severity rating of an issue based on

these criteria.

This is not an assessment of risk as it does not include a valuation of the data or system,

but it does provide the ability to prioritize the vulnerabilities identified within the

target system or application and to integrate into their own risk management systems.

 Impact

Li
ke

lih
o

o
d

 Negligible Minimal Moderate Major Catastrophic

Rare LOW LOW LOW MEDIUM HIGH

Unlikely LOW LOW MEDIUM HIGH CRITICAL

Moderate LOW MEDIUM MEDIUM HIGH CRITICAL

Likely MEDIUM MEDIUM HIGH CRITICAL CRITICAL

Very Likely MEDIUM HIGH HIGH CRITICAL CRITICAL

Likelihood

The likelihood rating of a vulnerability encompasses both the likelihood of the

vulnerability being identified and attacked as well as the likelihood of that attack being

successful. This is evaluated by taking into consideration the following elements:

Exploitability

 Difficulty and technical knowledge or skill required to identify/exploit the issue

 Time or resources required to mount a successful attack

 Availability of exploit code and automated attack tools

Reproducibility

 Ease of reproducing a successful attack

Customer Confidential Security Document 18

 Additional requirements for the attack to be successful, for example:

o Victim user must be logged in

o Some level of interaction by the victim user is required

Discoverability

 Number of instances of the vulnerability identified in the system

 Level of authentication required to access affected components

 Accessibility of the system (internet-facing or internal)

 Degree of specific Insider knowledge required

Frequency

 How often the issue is likely to occur over a period of time

 History of the issue in the industry

 Existence of self-propagating malware targeting the issue

These factors will be employed to formulate a final likelihood rating for a given issue.

Impact

The impact rating assesses the significance of exposure to a particular vulnerability.

This is evaluated by considering the impacts to the affected system and the underlying

business. The factors under consideration are outlined in the following table.

Customer Confidential Security Document 19

Impact Negligible Minimal Moderate Major Catastrophic

Confidentiality Disclosure of
public information

Minor disclosure
of commercial-in-

confidence
information

Major disclosure
of commercial-in-

confidence
information

Minor disclosure
of highly-

confidential
information

Major disclosure
of highly

confidential
information

Integrity
Unauthorized

modification of
public data

Small-scale
unauthorized

modification of
private data

Large-scale
unauthorized

modification of
private data

Small-scale
unauthorized

modification of
trusted data

Large-scale
unauthorized

modification of
trusted data

Availability Minor increase in
processing load

Minor outage in a
business system

Outage or
unavailability of a
business system

Extended
unavailability or

outage of a
business system

Unavailability or
outage of a

business-critical
system

Brand or

Reputation

Complaints from
small number of

customers

Complaints from
small number of
customers across

a broader
customer base

Complaints from a
large number of
customers and
localized media

coverage

Short term
adverse large
scale media

coverage

Extended adverse
large scale media

coverage

Regulatory and

Legal
Warnings for

minor breaches

Formal caution for
regulatory

breaches or threat
of legal

proceedings

Targeted audit /
investigation by

regulator or minor
legal proceedings
brought against
the organization

Fines imposed and
negative media

coverage or major
legal proceedings
brought against
the organization

Service line closed
down

Customer Confidential Security Document 20

B. Penetration Testing Methodology

Nettitude has a series of approaches for conducting Penetration Tests.

Black Box Testing

In a Black Box test, the client does not provide Nettitude with any information about

their infrastructure. For internal tests the customer may provide no more than a

network point for the tester to connect in to. For external tests, this may simply be a

URL or even just the company name that is in scope for assessment.

Nettitude is tasked with testing the environment as if they were an attacker with no

information about the infrastructure or application logic that they are testing. Black

Box tests tend to take longer to commission than White Box tests and may identify less

exposures and vulnerabilities than those of White Box tests.

White Box Testing

In a White Box test, clients provide Nettitude with information about the applications

and infrastructure prior to the commencement of the testing engagement. Usernames

and Passwords are provided to Nettitude's testing team as part of the engagement,

and the client may provide Nettitude’s consultants with access to source code. In this

type of testing engagement, Nettitude works closely with the client to perform the

assessment. These types of tests tend to gain deeper understanding of the application

and infrastructure logic, and may generate highly comprehensive test results.

Grey Box Testing

A Grey Box test is a blend of Black Box testing techniques and White Box testing

techniques. In Grey Box testing, clients provide Nettitude with snippets of information

to help with the testing procedures. This results in a highly focused test.

11

