
Follow-up to Cryptographers’ Feedback on the EUDI ARF:

Integrating an Anonymous-Credential-based Solution to Hardware

July 2024

Abstract

Issuing digital identity documents to citizens at large scale so far has failed despite many attempts,
mainly because citizens did not (want to) buy the hardware necessary to securely manage and use
cryptographic keys. Today, for the first time in history, many users do have mobile phones that contain
a piece of secure hardware that is able to manage such keys and their secure use part of by the operating
system. This technology is generally referred to as Passkeys. Similarly, there is hardware and software
systems available that allow one to build system to securely issue digital credentials. While there are
many standards for cryptographic (signature) scheme for such systems, the most widely used is ECDSA,
and for Passkeys that is the only scheme that is currently supported. The use of identity and personal
information is very sensitive and requires sufficient protection, in particular in connection with any
electronic media. That is, a digital identity scheme must allow users to have different identities with
different parties and be able to selectively reveal attributes from a credential obtained. The goal of
this document is to describe an identity system that provides privacy and can be implemented with
the existing hardware and operating system and the algorithm that hardware supports. I.e., it can be
realized solely in the application space and can be rolled out without requiring any change in hardware,
firmware, or operating systems. In particular, the document describes a digital identity and credential
scheme that addresses:

• a user’s identity is bound to a passkey device that supports (only) ECDSA,

• an identity provider can issue credentials to a user’s identity, the credentials containing a number
of attributes (also here ECDSA is the algorithm of choice),

• users can present a credential to a relying party where they can decide to reveal only a selection of
the attributes (and in such a way that the presentation transcript can not be linked to the original
credential issuance transaction unless a unique attribute was revealed). This presentation is realized
with zero-knowledge proofs.

For simplicity of the exposition and to initiate an iterative discussion, this document does not (yet)
describe 1) how to present predicates over attributes, 2) describes only the very simple case of one issuer
(and not a system where there is several issuers and users are not fully identified to all of them, and
3) does not consider revocation. These functionalities can be added but of course add some complexity.
The scheme is described at a high-level only, in particular, 1) a number of cryptographic implementation
details are left out and 2) no security proofs are given. Both of which is left as future work and will need
to be done.

1 Introduction

The purpose of this document is to outline a basic construction that 1) is implementable in short time and
2) addresses the main requirements as we understand them (foremost hardware binding, efficiency, practical
deployability, and privacy). It does however not offer all features that one would expect such as revocation
and supporting multiple issuers where the user is not fully identified to the issuers. While these features can
be added, we prefer to first have an iterative approach towards the final specification. Thus the document

1



also serves to clarify those requirements and to agree on a way forward to 1) agree on these requirements,
2) what specification(s) of the scheme is needed in 3) what time frame, and 4) forming a team to work on
this specification.

With digital credentials (anonymous or not), the issue of preventing a user from sharing their credential
is inherently difficult due to digital data being easy to copy. While we can mitigate this by adding some bio-
metric aspect, requirement for presenting multiple credentials belonging to a single person, or disincentivize
sharing through risk or policies, we give a method of adding a physical aspect that requires transferring
the physical component to share the credential. Specifically, we require credential presentation to require
interaction with trusted hardware on the user’s phone, and therefore require a user to share their phone in
order to allow others to use their credentials.

Construction Outline. Working with the constraint that secure elements on phones must be used as-is
(i.e., the passkey technology supporting ECDSA signatures), we give a straightforward way of integrating
the secure element with any credential.

The general idea is as follows. Let PKDbe the public key of a secure element of a user’s phone. When
the user is issued a credential from the Identity Provider, the user’s device’s public key PKDis included
as an attribute in its credential. Now, when a user wishes to present his credential to the Relying Party,
he must also prove that he is in current possession of the secure element corresponding to the public key
PKDin his credential. This can be done by having the Relying Party send a unique string ctxt and the
user returning a signature on that value produced by his phone’s secure element. The string should bind
the presentation to the context where the credential is presented and it must be ensure that it has not been
used before. To do this without requiring the user reveal PKDto the Relying Party, the user can use generic
zero-knowledge techniques to prove they are 1) in possession of a signature on ctxt that verifies under an
undisclosed attribute of their credential, 2) in possession of a signature on that credential that verifies under
the issuer’s public key PK I , and 3) if an additional attribute is revealed, that attribute is also contained in
the credential.

Using modern generic zero-knowledge proof system in such a construction are very efficient and hence it
is no longer necessary to use a specific signature scheme (such as BBS+ or CL) that were designed to used
discrete logarithm proofs systems because at that time these were the only practical proofs systems.

Having said this, we still need to consider how the attributes are encoded into the message signed by the
issuer to achieve a very practical system. Let us explain. A cryptographic signature scheme (and ECDSA
in particular) takes as input a message in the format of a binary string, hashes it to obtain an algebraic
value that is then used in the signing and verification algorithms. The system sketched above needs to make
some statements about attributes (i.e., the user’s key PKDand the revealed attributes) and hence needs to
consider the encoding of the attributes into the binary string that is hashed and signed. In practice such a
mapping from structured data (such as a credential) is done using encoding scheme such as JSON. While
such encoding have advantages in terms of developer friendliness, they will make the zero-knowledge proofs
slow. It is thus important that in the construction, a more low level encoding is used. That does not mean
that at a higher level API encodings such JSON cannot, it just means that we need to specify an low level
API encoding for the credential format that is less “bloated.”

We note out that while the described scheme is tailored towards ECDSA because that is the scheme that is
prevalent in the hardware in the population, the approach itself is “crypto agile”: it can be instantiated with
other cryptographic schemes including ones that are post-quantum secure. In fact, the approach presented
here seems to be the best one for a post-quantum credential system. In that sense, the scheme proposed is
“post-quantum ready.”

Document Organization. We review basic preliminaries in Section 2 before going into the construction
in Section 3. In Section 3.1 we give an outline of the construction with the exact signing algorithms and
zero-knowledge protocols abstracted away. In Section 3.2 we give the protocol with the abstractions replaced
by (ey: word)

2



2 Preliminaries

ECDSA. The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analog of the
Digital Signature Algorithm (DSA) and is standardized by NIST [oST23]. We let G denote the elliptic curve
group, q the order of the group, and G a generator of the group. ECDSA additionally makes use of a hash
function H, which we instantiate with SHA-256.
A public and private key pair for ECDSA is generated as:

1. Uniformly choose a secret key sk← Z∗
q .

2. Calculate the public key as pk = sk ·G.

3. Output (pk, sk).

To sign a message m under a secret key sk, the signer does:

1. Uniformly choose an instance key r ← Z∗
q .

2. Calculate R = r ·G and let rx be the x-coordinate of R, modulo q.

3. Calculate

s =
H(m) + sk · rx

r

4. Output the signature as (s, rx).

To verify a signature (s, rx) on a message m under a public key pk, the verifier does as follows:

1. Calculate

R′ =
H(m) ·G+ rx · pk

s

and let rx
′ be the x-coordinate of R′, modulo q.

2. Output 1 if and only if rx
′ = rx. Output 0 otherwise.

Zero-Knowledge Proofs. Interactive Oracle Proofs (IOP) are a type of zero-knowledge proof (ZKP)
system that aims to provide efficient and scalable proofs with strong security guarantees. IOPs enable a
verifier to be convinced after having only queried the proof at random locations rather than reading the
entire proof and require interaction between a prover and a verifier. Much work has been done in this
space minimizing the computational and communication overhead typically associated with zero-knowledge
proofs, making it well-suited for practical applications, especially in environments such as privacy-preserving
protocols.

For the ZKP in our application, we also make use of a polynomial commitment scheme to commit to
the witness for the proof. A polynomial commitment scheme allows a prover to commit to a polynomial
and later prove that the evaluation of this polynomial f on a specific point is correct, i.e. f(x) = v for
public values v and x. In our context, the function is defined by the witness for our zero-knowledge proof
Ligero [AHIV17] is a zero-knowledge argument of knowledge protocol based on the MPC-in-the-head method
of zero knowledge proofs and only relies on collision-resistant hash-functions. On our case the function is
defined by the witness, the image is 1 and the pre-image is the evaluation on the verification of the ECDSA
signature by the issuer and by the user’s device as specified below in the high-level description. When used
as a polynomial commitment scheme, Ligero allows one to prove an inner-product with a public vector,
prove linear constraints on committed values, and prove a small number of quadratic constraints between
committed values.

3



3 Construction

In this section we give the basic construction for an issuer, a user, and a relying party. It has two phases: 1)
the issuer issues a credential to a user and 2) the user presents the credential to a relying party. The second
phase can be repeated many times to different relying parties.

We first describe the basic setting and notations of our protocols. Then, we expand on the construction
outlined in Section 1, which requires a user to be in possession of their phone when presenting a credential
by incorporating the secure element of a user’s phone into the credential presentation procedure.

Public Parameters. Our constructions make use of ECDSA, which we briefly reviewed in Section 2.
ECDSA requires specifying an elliptic curve group G of order q and a generator G for G. It additionally
requires a hash function H (e.g., SHA-256), which maps to bit strings of length q. For the zero-knowledge
proofs, their are additional parameters that will be added in the next version.

Credential Format. As mentioned the construction requires an efficient mapping from credential format
to the binary string that is input to the signature scheme’s sign algorithm. As there will be many different
credential formats, it is not possible a format that will fit all of them. We assume there is a public registry
(standard) that defines mappings from a credentials’ attributes to binary strings (and their length). There
will be further work needed here. For now we assume that the first bits of the message encode PKD, the
next part a credential specifier csp (that defines how many attributes will follow and how much space they
take and how they are encoded), and then followed by n attributes a1, . . . , an. The attributes will typically
include an expiration date, a serial number of the purpose of revocation, and information about user.

User’s Device. A user’s device contains a secure component that is able to issue signatures under a public
key that only the device’s secure element knows the corresponding signing key for. ECDSA has widespread
support among secure elements, and we give our constructions assuming the secure element issues ECDSA
signatures. We will refer to the ECDSA public key associated with the user’s device’s secure element as
PKD.

Identity Provider. Our constructions consider the Identity Provider to be issuing ECDSA signatures for
the credentials, but the techniques can applied to other types of signatures. We specify ECDSA signatures
for efficiency reasons during the credential presentation phase since the user’s device is also assumed to use
ECDSA. We denote the ECDSA public key of the Identity Provider as PK I .

Relying Party. We note that for our suggested instantiations , we do not require the Relying Party to
have performed extra setup prior to the credential presentation. If a different zero-knowledge protocol than
the one in Section 3.2 is used, this may require the Relying Party to perform a one-time setup prior to any
credential presentations.

3.1 High level description

3.1.1 Credential Issuance

For an Identity Provider to issue a credential to a user, the two first establish a session. The user uses the
public key of its secure element PKD to authenticate the session. During this session, the user and Identity
Provider perform any steps necessary to establish if a credential should be issued and what attributes should
be included in the credential. Additional means might be required to establish that PKD is indeed the
public key of the specific user’s device, such as being personal present at an office and using the device in
the presence of supervising personnel. In the following figure we represent this process by “establish session”
and “establish attributes.”

Once the parties have determined which attributes should be included in the credential, the Identity
Provider will then issue a credential of type csp with these attributes a1, . . . , an to user that is bound to

4



Identity Provider User

Public: PK I PKD

Private: SK I SKD

PKD

establish session

establish attributes

c = signI(SK I , (PKD, csp, a1, . . . , an))
c

Figure 1: Credential Issuance.

the user’s device key PKD by computing the signature on these values and then sending this signature to
the user’s device. Specifically, the credential is computed as c = signI(SK I , (PKD, csp, a1, . . . , an)), where
signI is the signature scheme of the Identity Provider (e.g., ECDSA), SK I is the Identity Provider’s signing
key, and the message signed is the concatenation of the user’s device’s public key PKD with the credential
specification and attributes. Note that a valid credential’s specification csp will be required to define the
number of attributes in the credential and each attribute’s length.

3.1.2 Credential Presentation

For a user to present a credential to a Relying Party, the two must first establish a session, e.g., using the
webauthn standard. We note that as the user very likely will be pseudonymous during this interaction, as
webauthn generates a fresh public key for every url/origin. However, the protocol presented here can also
be used in sessions that are established differently. Regardless of how a session is establish, the credential
presentation should be bound this the session. To this end, we require the user and Relying Party to jointly
define a session context ctxt that is unique to the interaction. This context can for instance be defined as
the transcript of the key exchange protocol used to setup the end-to-end encryption between the user and
the Relying Party, or as the session key that was established, as long as it is ensured that ctxt is a unique
value with very high probability. Once the session and context ctxt have been established, the user produces
the proof of its credential as follows.

The user produces a signature on ctxt using its device’s secure element’s public key as s = signD(SKD, ctxt),
where signD is the signature scheme of the secure element. Then, the user produces a polynomial commit-
ment com to the function f(PK I , csp, ctxt) = ver I(PK I , (PKD, csp, a1, . . . , an), c) ∧ verD(PKD, ctxt , s)
where ver I , verD are the verification algorithms of the Identity Provider and device’s secret element, respec-
tively, and secret values PKD, c, a1, . . . , an, and ctxt define f . Note this function corresponds to the user
holding (1) a credential c that is a valid signature on PKD, attributes a1, . . . , an, and specification csp with
respect to the Identity Provider’s public key PK I and (2) a signature s on the unique context ctxt that
verifies with respect to the device’s public key PKD. The user then sends this commitment com, the public
key of the Identity Provider PK I , and its credential specification csp to the Relying Party. Finally, the two
parties execute an IOP, with the user acting as the prover and the Relying Party as the verifier, for the
statement f(PK I , csp, ctxt) = 1, where the function f is unknown to the verifier but is the value committed
to in com. At the conclusion of the interaction, if the Relying Party accepts the proof, then the Relying
Party can be convinced the user holds a valid credential. Otherwise, if the proof fails, then the Relying
Party can conclude that either the user does not hold a valid credential or the user is not in possession of
the device which is associated the credential it attempted to present.

5



Relying Party User

Public: PK I , csp

Private: PKD,SKD, c, a1, . . . , an

establish session

establish ctxt

s = signD(SKD, ctxt)

com = com(PKD, a1, . . . , an, c, s)

PK I , csp, com

Interactive Proof that the opening of com

and values ctxt , csp,PK I are such that

1 = verI(PK I , ((PKD, csp, a1, . . . , an), c))

∧ 1 = verD(PKD, (ctxt , s)

...

If proof verifies, proceed.

Otherwise, abort.

Figure 2: Credential Presentation.

6



3.2 Concrete instantation

One can use an arithmetic circuit based proof system to implement this zero-knowledge proof system. One
modern, generic recipe is to choose a IOP system and a compatible polynomial commitment scheme. While
there are many possible choices, one specific choice is to use a sumcheck-based protocol for the IOP, and a
hash-based polynomial commitment scheme. Sumcheck, for example, when used in a circuit-based protocol,
has a linear-time prover, and a careful implementation can achieve a very small constant overhead. In
particular, the sumcheck prover does not use an FFT internally like many other proof systems. This approach
is taken by a recent unpublished work by one of the authors. Their Hyrax implementation used a discrete-log
based commitment scheme and a bulletproof to prove the opening. For certain small proofs, this solution is
performant. The Ligero polynomial commitment also has size that grows asymptotically as square-root of
the witness size, but has a larger implementation constant. However, Ligero only requires hashing, and this
circuit exceeds the cross-over point—therefore, they chose to use it instead.

A paper describing the full system is planned to be submitted to a conference, but this work was done
under a company arrangement, and thus must be internally reviewed.

4 Considerations

As mention already, the protocol presented is very bare bones and will need to be extended for meet all
requirements.

For instance, one might require that is it possible to revoke credentials. There are many approaches
to this including short-lived credentials and regularly publishing signatures on all ranges of all valid serial
numbers or a hash-tree of them. At first sight, the latter seems to be the best approach for our setting.

Next, one might require predicates over attributes such as proving that one is older than 18 given a
certified birth date. With proper encoding of attributes, proving that such predicates are true will be easy
due to the use of generic zero-knowledge proofs.

We all have several credentials in our wallet. While these typically all include our full names as attributes,
in an online setting, we have many more credentials which hardly ever contain our name but user some email
address. Thus it might be important that it is possible to issue credentials to users that are pseudonym and
then use different credentials together. Such scenarios can also be addressed with extensions to the protocol.
The question here is what scenarios are envisioned which merits more discussion.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. pages 2087–2104, 2017. doi:10.1145/
3133956.3134104.

[oST23] National Institute of Standards and Technology. Digital signature standard (dss). Technical report,
U.S. Department of Commerce, Washington, D.C., 2023. doi:10.6028/NIST.FIPS.186-5.

7

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.6028/NIST.FIPS.186-5

	Introduction
	Preliminaries
	Construction
	High level description
	Credential Issuance
	Credential Presentation

	Concrete instantation

	Considerations

