
A Framework for Integrating Distributed Ledgers

Peter Somogyvari,
Technology Architect, Accenture

What is it?

• A pluggable, enterprise-grade
framework to transact on multiple
distributed ledgers without introducing
yet another competing blockchain

• An SDK of SDKs

Photo by Massimo Botturi on Unsplash

https://unsplash.com/@wildmax?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/data-center?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Why?

1. To address blockchain/DLT fragmentation
2. Save (distributed) app. developers from re-inventing the wheel
3. Lower risk of adopting distributed ledgers by businesses

How bad is fragmentation?

• Integrations required to have a fully connected network (graph) of
ledgers (not nodes) grows quadratically with the number of ledgers.

• Not quite as bad as the exponential growth, but still pretty bad…

• n: The number of ledgers in existence
• c: The possible number of integrations between ledgers

• c = n * (n-1) / 2
• 100 ledgers => 5k integration scenarios

Position in the Hyperledger Greenhouse

Position in the Hyperledger Greenhouse

Generic Use Case
1. Business case where multiple ledgers are involved
2. Application adds value by somehow making said ledgers data/assets work

together (e.g. transactions have to happen on both ledgers)

User
browser, handheld,

desktop, data center,
etc.

Ledger B

Ledger A

Cacti

HTTP;
gRPC;
WebSockets;

Key Hyperledger Cacti Design Principles

Plugin Architecture

Maximize flexibility and
future-proofing through

plug-in architecture

Secure by Default

Avoid needing explicit
action from users to have a
secure Cacti deployment.

Toll Free

Users should not be
required to use tokens for
transactions & Operators
should not be required to

take a cut of individual
transactions

Low Impact
Deployment

Do not interfere with or
impede existing network

requirements

Additional Design Principles

•Wide Support
•Prevent Double Spending (where applicable)
•Preserving Ledger Features
•Horizontal Scalability
• (Complete list in the whitepaper)

Hyperledger Cacti

Hyperledger Cacti Architecture

Former Cactus Components Former Weaver Components

API-Server Node
Server HTLCsRelay

Architecture Decisions

• The code is written mostly in Typescript and Rust
• We use Lerna for managing a mono-repo where packages can be:

• Server-side: NodeJS only
• Client-side: Browser only
• Cross-platform/Universal: NodeJS and Browser as well
• Any other language such as Rust, go, Kotlin/Java, etc.

• Test Automation

Plugin Architecture

•Nobody knows the future
•We can prepare for it with
software that bends not breaks
when major technological shifts
occur.

Photo by Ameer Basheer on Unsplash

https://unsplash.com/@24ameer?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/future?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Plugin Development - Governance Model

•Plugin projects can live outside of the main Cacti repo
•Anyone can create a new plugin and use/promote it
independently

•There is no need to have your plugin implementation
approved by the maintainers

• Just implement the published interfaces and publish your
code, done.

Language Agnostic Plugin Development

• You can write Cacti plugins in any language!

<<OpenAPI
Spec>>

<<OpenAPI
Generator>>

rust client code
(optional here)

Rust server code

Typescript client code

<<OS_Process_Rust>>

<<OS_Process_NodeJS>>

Network
(HTTP)

What About Supporting X?

?Plugin
exists?

No Yes

?Is it pluggable?

Use Plugin

Implement
Plugin Interface

Yes

No

PR to
Cacti

Plugin Example - Keychain

•The interface is meant to be really simple:

export interface IPluginKeychain extends ICactusPlugin {

 getKeychainId(): string;

 has(key: string): Promise<boolean>;

 get<T>(key: string): Promise<T>;

 set<T>(key: string, value: T): Promise<void>;

 delete<T>(key: string): Promise<void>;

}

•Store secrets that other plugins can retrieve
•Role Based Access Control is available on a per Endpoint
Basis for all plugins

Plugin Example - Keychain

<<ledger>>

<<plugin-keychain>>
<<secret store>>

<<cactus-api-server>>

<<plugin-ledger>>

<<human>>

Preserve Ledger Features

•Do not limit a transaction to the intersection of features of
two participating ledgers

• Example: If both ledgers have private transactions, enable
it through Cacti

• No unexpected behaviour from either side of a
transaction: If only one side supports private transactions
there should be no expectation of privacy in the scope of
the transaction

Performance and Scalability

• Bottleneck should always be the ledger, not Cacti
• Coming soon:

• horizontal scalability for the REST API server and the validator node
components.

• Published benchmarks with performance characteristics broken down
by

• Supported ledgers (Fabric, Quorum, Besu, Corda) and
• Supported tasks (Read/Write Ledger, Sign Transaction, Verify

Transaction)

Supply Chain App (Quorum+Besu+Fabric) Demo

Visit http://localhost:3100 for the demo GUI
(might take a several minutes for the container to boot up)

$ docker run \
 --rm \
 --privileged \
 -p 3000:3000 \
 -p 3100:3100 \
 -p 3200:3200 \
 -p 4000:4000 \
 -p 4100:4100 \
 -p 4200:4200 \
 hyperledger/cactus-example-supply-chain-app:2021-03-24-feat-362

http://localhost:3100

Roadmap (Subject to Change)
• Finalize 2.0 Design and Technical Architecture
• Perform Merge of Codebases from Weaver & Cactus

• Issue 2.0.0-GA release
• Use-cases and documentation are up to date with the latest architectural

changes and the Weaver+Cactus codebases can be part of the same
deployment

• Identity
• Bootstrapping with different Trust Anchors through plugins (JSON Web Signatures, X509, Indy, DID, DIF)

• Implementation
• Corda v5.0 Support
• Corda Flow Invocation JSON DSL Simplified (currently functional, but cumbersome due to JVM type

system)
• Cross-ledger Atomic Swaps - HTLC

Roadmap (Subject to Change)

• Documentation
• Central Bank Digital Currency Example
• Reference Architecture Documented
• First public test deployment

• Transact Permissioned & Permissionless stablecoins
• How to use with common wallets

• Performance
• Performance benchmarks with regularly updated and published results
• “One-click” scripts to run full benchmark suite on provided infrastructure provider (cloud vendor)

Join the Cacti
Community!

 https://chat.hyperledger.org/channel/cacti

https://github.com/hyperledger/cacti

 https://wiki.hyperledger.org/display/cactus

https://wiki.hyperledger.org/display/cactus

