
Open Enterprise Agent
Maintainer and Contributor Call

Tuesday 12-Dec-2023

All Hyperledger community members must adhere to
the Hyperledger Code of Conduct

https://wiki.hyperledger.org/display/HYP/Hyperledger+Code+of+Conduct

Agenda

1. Introduction
2. Community update
3. Mediation
4. Architecture Decision Records
5. Security
6. Q&A

Community update

- Last week we officially announced the Open Enterprise Agent to the

community

- Today is our last maintainer and contributor call of 2023. Will resume on the

9th of Jan 2024

- Cardano Identity Wallet launched

- Community and Ecosystem Identity Education

Mediation

- DIDComm V2 Mediator will be moved to OEA Lab in Q1 2024 (including
interoperability test-suite)

- Now supports protocols HTTP(S) and WS(S)(websockets)
- WS(websockets)

- Message is delivered over websocket connection
- Pickup protocol with live delivery mode enabled
- No Polling required by clients (e.g. web wallet or mobile wallet) using mediator

- Alpha environment (https://sit-mediator.atalaprism.io/)
- Feedback: please raise issues or reach out on discord

https://github.com/input-output-hk/atala-prism-mediator
https://github.com/input-output-hk/didcomm-v2-mediator-test-suite
https://didcomm.org/messagepickup/3.0/?page=1#:~:text=addressed%20recipients.-,Live%20Mode,-Live%20Mode%20is
https://sit-mediator.atalaprism.io/
https://github.com/input-output-hk/atala-prism-mediator/issues
https://discord.com/channels/1146426895114702858/1156506829287850025

Architecture Decision Records

● Open: 0
● Draft: 6
● Accepted that needs to be superseded: 1
● Missing: ?

Suggested Actions:

1. Confirm what active development should have ADRs - work on opening these
2. Rebrand and update text in ADR templates/site
3. Ensure current state is correct
4. Work on process for keeping them up to date

https://github.com/hyperledger-labs/open-enterprise-agent/tree/main/docs/decisions

Security - Principles

Principles

● It should be hard to build insecure solutions that create harm for the
people using or subjected to them

○ Practice a secure software development life cycle (SSDLC) so that our systems are secure by
design

○ Be part of making sure the ecosystem is secure [feedback on protocols and other services]
○ Ensure our systems for building are protected from abuse (so that the code stays secure)

● Ensure we can accept contributions with a low barrier to entry
○ Use automation and tooling to help contributors, both as they are developing and within build

pipelines

Security - Potential Controls

● Create a Security Policy
○ Document how to report vulnerabilities
○ Document what audits will take place and how we publish the findings

■ Question: If audits are organisation sponsored - how do we manage interactions? How do we communicate
results? How do we set up scope?

● Automation Security
○ Run the full pipeline only when a maintainer comments/reviews (Limit normal pipeline)

● Application Security
○ Code

■ Use Static Application Security Testing (SAST) for Quality and Security
■ Adopt Secure Software development lifecycle (SSDLC)
■ Continue to have external code audits
■ Undergo Dynamic Application Security Testing (DAST)

○ Features
■ Driven by community based on value - for example the existing integration to Keycloak and Vault

● Ecosystem Security
○ Make sure we feedback issues and improvements that we see from integrating/implementing and/or when we do

performance and interop testing

Security - Next Steps

Step 1 - Write a security policy and add to repo (SECURITY.md)

● Reporting Vulnerabilities
○ Decision Required - Manual Process (e.g. Discord/Email) or Github Private Security

Advisory (PSA)
○ If manual - document email/communication channel and advice on how to report + template
○ If PSA - set up github, set up template and run through table-top with maintainers

● Security Notification Process
○ How we publish information the vulnerability, it’s remediation etc - usually a specific

high-urgency channel for security related topics
● Security Principles

○ Include our principles from the previous slide last in the document

https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing-information-about-vulnerabilities/about-coordinated-disclosure-of-security-vulnerabilities#about-reporting-and-disclosing-vulnerabilities-in-projects-on-github
https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing-information-about-vulnerabilities/about-coordinated-disclosure-of-security-vulnerabilities#about-reporting-and-disclosing-vulnerabilities-in-projects-on-github

Security - Next Steps

Step 2 - Secure our automation pipeline

● Limit what the default build pipeline does [if not a maintainer]
● Set up a full pipeline to trigger if maintainer approves

Security - Next Steps

Step 3 - Get contributors thinking about security

● Simple checklist in PR or release notes
● Buddy up with a maintainer if there is a security implication

Security - Next Steps

Step 4 - Attach Snyk to Repository

● Touch base with Community Architects to sense check and approve
● A set of maintainers take ownership of testing features of Snyk

○ Review IDE tools and build integrations
■ (repeat for SAST, Software Composition Analysis (SCA), Container Scanning,

Infrastructure as Code Scanning)
○ All configured in way to provide auxiliary information, not to block

● Report back after [Insert appropriate time period here] to maintainers and
propose full adoption plan

Security - Future

● Continue to iterate on best practices for a Secure Software Development Life
Cycle

● Implement additional controls as and when we feel they are necessary

Q&A

Any questions?

