
Consensus Algorithms

Consensus

- A fundamental problem in fault-tolerant distribution
systems.

References:
https://raft.github.io/
https://en.wikipedia.org/wiki/Consensus_(computer_science)

https://raft.github.io/

Consensus

- A fundamental problem in fault-tolerant distribution
systems.

- It involves multiple servers agreeing on same values.

References:
https://raft.github.io/
https://en.wikipedia.org/wiki/Consensus_(computer_science)

https://raft.github.io/

Consensus

- A fundamental problem in fault-tolerant distribution
systems.

- It involves multiple servers agreeing on same values.
- A fundamental problem in distributed computing is to

achieve overall system reliability in the presence of a
number of faulty processes.

References:
https://raft.github.io/
https://en.wikipedia.org/wiki/Consensus_(computer_science)

https://raft.github.io/

Consensus

This distributed network
will work correctly.

faulty node

Raft Consensus Algorithms

- Raft is a consensus algorithms for managing a replicated
log.

References: https://raft.github.io/raft.pdf

Raft Consensus Algorithms

- Raft is a consensus algorithms for managing a replicated
log.

- It’s equivalent to Paxos in fault tolerance & performance.

References: https://raft.github.io/raft.pdf

Raft Consensus Algorithms

- Raft is a consensus algorithms for managing a replicated
log.

- It’s equivalent to Paxos in fault tolerance & performance.
- Raft implements consensus by first electing a distinguished

leader, then giving the leader complete responsibility for
managing the replicated log.

References: https://raft.github.io/raft.pdf

Raft Consensus Algorithms

.

.

.
Client Leader

Servers

Log entries

Is safe to apply the
log to their state
machines?

Need of Leader in Raft Consensus Algorithms

- Leader simplifies the management of the replicated log.

References: https://raft.github.io/raft.pdf

Need of Leader in Raft Consensus Algorithms

- Leader simplifies the management of the replicated log.
- Leader also helps in the decomposition of the consensus

problem.

References: https://raft.github.io/raft.pdf

Decomposition of Consensus Problem

References: https://raft.github.io/raft.pdf

Raft decomposed the consensus problem into three relatively independent
subproblem –

Leader election Log replication Safety

Raft Basics

References: https://raft.github.io/raft.pdf

can tolerate 2 failure.

Raft Basics

References: https://raft.github.io/raft.pdf

Server can be divided in three states:

1. Leader

2. Follower

3. Candidate

Raft Server communication

References: https://raft.github.io/raft.pdf

Raft servers communicate using remote procedure calls (RPCs).

Two types of RPCs

RequestVote RPCs AppendEntries RPCs

More about Raft algorithms

References: https://raft.github.io/raft.pdf

Raft basically using three criteria

1. understandability

2. correctness

3. performance

fault tolerant in Raft algorithms

References: https://raft.github.io/raft.pdf

2f + 1 Ralf nodes tolerates failure of ‘f’ Raft nodes.

Thank you :)

